Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34301906

RESUMEN

The Southern Ocean (SO) harbors some of the most intense phytoplankton blooms on Earth. Changes in temperature and iron availability are expected to alter the intensity of SO phytoplankton blooms, but little is known about how these changes will influence community composition and downstream biogeochemical processes. We performed light-saturated experimental manipulations on surface ocean microbial communities from McMurdo Sound in the Ross Sea to examine the effects of increased iron availability (+2 nM) and warming (+3 and +6 °C) on nutrient uptake, as well as the growth and transcriptional responses of two dominant diatoms, Fragilariopsis and Pseudo-nitzschia We found that community nutrient uptake and primary productivity were elevated under both warming conditions without iron addition (relative to ambient -0.5 °C). This effect was greater than additive under concurrent iron addition and warming. Pseudo-nitzschia became more abundant under warming without added iron (especially at 6 °C), while Fragilariopsis only became more abundant under warming in the iron-added treatments. We attribute the apparent advantage Pseudo-nitzschia shows under warming to up-regulation of iron-conserving photosynthetic processes, utilization of iron-economic nitrogen assimilation mechanisms, and increased iron uptake and storage. These data identify important molecular and physiological differences between dominant diatom groups and add to the growing body of evidence for Pseudo-nitzschia's increasingly important role in warming SO ecosystems. This study also suggests that temperature-driven shifts in SO phytoplankton assemblages may increase utilization of the vast pool of excess nutrients in iron-limited SO surface waters and thereby influence global nutrient distribution and carbon cycling.


Asunto(s)
Cambio Climático , Diatomeas/fisiología , Ecosistema , Océanos y Mares , Eutrofización , Regulación de la Expresión Génica , Complejos de Proteína Captadores de Luz/metabolismo , Nitrógeno/metabolismo , Fotosíntesis/fisiología , Fitoplancton , Plastocianina
2.
Proc Natl Acad Sci U S A ; 115(52): 13371-13375, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30538206

RESUMEN

Biological dinitrogen (N2) fixation is an important source of nitrogen (N) in low-latitude open oceans. The unusual N2-fixing unicellular cyanobacteria (UCYN-A)/haptophyte symbiosis has been found in an increasing number of unexpected environments, including northern waters of the Danish Straight and Bering and Chukchi Seas. We used nanoscale secondary ion mass spectrometry (nanoSIMS) to measure 15N2 uptake into UCYN-A/haptophyte symbiosis and found that UCYN-A strains identical to low-latitude strains are fixing N2 in the Bering and Chukchi Seas, at rates comparable to subtropical waters. These results show definitively that cyanobacterial N2 fixation is not constrained to subtropical waters, challenging paradigms and models of global N2 fixation. The Arctic is particularly sensitive to climate change, and N2 fixation may increase in Arctic waters under future climate scenarios.


Asunto(s)
Cianobacterias/metabolismo , Haptophyta/metabolismo , Nitrógeno/metabolismo , Regiones Árticas , Fijación del Nitrógeno/fisiología , Océanos y Mares , Agua de Mar/química , Simbiosis/fisiología
3.
Proc Natl Acad Sci U S A ; 112(32): 9938-43, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26221022

RESUMEN

Southern Ocean primary productivity plays a key role in global ocean biogeochemistry and climate. At the Southern Ocean sea ice edge in coastal McMurdo Sound, we observed simultaneous cobalamin and iron limitation of surface water phytoplankton communities in late Austral summer. Cobalamin is produced only by bacteria and archaea, suggesting phytoplankton-bacterial interactions must play a role in this limitation. To characterize these interactions and investigate the molecular basis of multiple nutrient limitation, we examined transitions in global gene expression over short time scales, induced by shifts in micronutrient availability. Diatoms, the dominant primary producers, exhibited transcriptional patterns indicative of co-occurring iron and cobalamin deprivation. The major contributor to cobalamin biosynthesis gene expression was a gammaproteobacterial population, Oceanospirillaceae ASP10-02a. This group also contributed significantly to metagenomic cobalamin biosynthesis gene abundance throughout Southern Ocean surface waters. Oceanospirillaceae ASP10-02a displayed elevated expression of organic matter acquisition and cell surface attachment-related genes, consistent with a mutualistic relationship in which they are dependent on phytoplankton growth to fuel cobalamin production. Separate bacterial groups, including Methylophaga, appeared to rely on phytoplankton for carbon and energy sources, but displayed gene expression patterns consistent with iron and cobalamin deprivation. This suggests they also compete with phytoplankton and are important cobalamin consumers. Expression patterns of siderophore- related genes offer evidence for bacterial influences on iron availability as well. The nature and degree of this episodic colimitation appear to be mediated by a series of phytoplankton-bacterial interactions in both positive and negative feedback loops.


Asunto(s)
Bacterias/metabolismo , Ecosistema , Cubierta de Hielo , Interacciones Microbianas , Micronutrientes/metabolismo , Fitoplancton/metabolismo , Regiones Antárticas , Bacterias/efectos de los fármacos , Clorofila/metabolismo , Clorofila A , Retroalimentación Fisiológica/efectos de los fármacos , Hierro/farmacología , Interacciones Microbianas/efectos de los fármacos , Sistemas de Lectura Abierta/genética , Fitoplancton/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico/efectos de los fármacos , Vitamina B 12/farmacología
4.
Rapid Commun Mass Spectrom ; 27(8): 851-8, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23495054

RESUMEN

RATIONALE: Dissolved organic nitrogen (DON) represents a significant fraction of the total dissolved nitrogen pool in most surface waters and serves as an important nitrogen source for phytoplankton and bacteria. As with other natural organic matter mixtures, ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) is the only technique currently able to provide molecular composition information on DON. Although electrospray ionization (ESI) is the most commonly used ionization method, it is not very efficient at ionizing most DON components. METHODS: Positive- and negative-mode atmospheric pressure photoionization (APPI) coupled with ultrahigh resolution FTICRMS at 9.4 T were compared for determining the composition of DON before and after bioassays. Toluene was added as the APPI dopant to the solid-phase DON extracts, producing a final sample that was 90% methanol and 10% toluene by volume. RESULTS: Positive-mode (+) APPI proved significantly more efficient at ionizing DON; 62% of the formulas that could be assigned in the positive-ion spectrum contained at least one nitrogen atom vs. 31% in the negative-ion spectrum. FTICR mass spectral data indicated that most of the refractory DON compounds (i.e. nonreactive during the 5 days of the incubation) had molecular compositions representative of lignin-like molecules, while lipid-like and protein-like molecules comprised most of the small reactive component of the DON pool. CONCLUSIONS: From these data we conclude that (+) APPI FTICRMS is a promising technique for describing the molecular composition of DON mixtures. The technique is particularly valuable in assessing the bioavailability of individual components of DON when combined with bioassays.


Asunto(s)
Espectrometría de Masas/métodos , Compuestos de Nitrógeno/análisis , Compuestos de Nitrógeno/química , Presión Atmosférica , Mezclas Complejas/química , Análisis de Fourier , Oxígeno/química , Procesos Fotoquímicos , Ríos/química
5.
Geobiology ; 19(1): 35-47, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33067916

RESUMEN

In the geological record, fossil phosphatic stromatolites date back to the Great Oxidation Event in the Paleoproterozoic, but living phosphatic stromatolites have not been described previously. Here, we report on cyanobacterial stromatolites in a supratidal freshwater environment at Cape Recife, South African southern coast, precipitating Ca carbonate alternating with episodes of Ca phosphate deposition. In their structure and composition, the living stromatolites from Cape Recife closely resemble their fossilized analogues, showing phosphatic zonation, microbial casts, tunnel structures and phosphatic crusts of biogenic origin. The microbial communities appear to be also similar to those proposed to have formed fossil phosphatic stromatolites. Phosphatic domains in the material from Cape Recife are spatially and texturally associated with carbonate precipitates, but form distinct entities separated by sharp boundaries. Electron Probe Micro-Analysis shows that Ca/P ratios and the overall chemical compositions of phosphatic precipitates are in the range of octacalcium phosphate, amorphous tricalcium phosphate and apatite. The coincidence in time of the emergence of phosphatic stromatolites in the fossil record with a major episode of atmospheric oxidation led to the assumption that at times of increased oxygen release the underlying increased biological production may have been linked to elevated phosphorus availability. The stromatolites at Cape Recife, however, form in an environment where ambient phosphorus concentrations do not exceed 0.28 µM, one to two orders of magnitude below the previously predicted minimum threshold of >5 µM for biogenic phosphate precipitation in paleo-systems. Accordingly, we contest the previously proposed suitability of phosphatic stromatolites as a proxy for high ambient phosphate concentrations in supratidal to shallow ocean settings in earth history.


Asunto(s)
Cianobacterias , Fósiles , Fósforo , Sedimentos Geológicos , Geología , Fosfatos , Fósforo/análisis
6.
Front Microbiol ; 8: 1018, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28649233

RESUMEN

Warming at nearly twice the global rate, higher than average air temperatures are the new 'normal' for Arctic ecosystems. This rise in temperature has triggered hydrological and geochemical changes that increasingly release carbon-rich water into the coastal ocean via increased riverine discharge, coastal erosion, and the thawing of the semi-permanent permafrost ubiquitous in the region. To determine the biogeochemical impacts of terrestrially derived dissolved organic matter (tDOM) on marine ecosystems we compared the nutrient stocks and bacterial communities present under ice-covered and ice-free conditions, assessed the lability of Arctic tDOM to coastal microbial communities from the Chukchi Sea, and identified bacterial taxa that respond to rapid increases in tDOM. Once thought to be predominantly refractory, we found that ∼7% of dissolved organic carbon and ∼38% of dissolved organic nitrogen from tDOM was bioavailable to receiving marine microbial communities on short 4 - 6 day time scales. The addition of tDOM shifted bacterial community structure toward more copiotrophic taxa and away from more oligotrophic taxa. Although no single order was found to respond universally (positively or negatively) to the tDOM addition, this study identified 20 indicator species as possible sentinels for increased tDOM. These data suggest the true ecological impact of tDOM will be widespread across many bacterial taxa and that shifts in coastal microbial community composition should be anticipated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA