Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(39): 21408-21418, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37747784

RESUMEN

The Bergman cyclization of (Z)-hexa-3-ene-1,5-diyne to form the aromatic diradical p-benzyne has garnered attention as a potential antitumor agent due to its relatively low cyclization barrier and the stability of the resulting diradical. Here, we present a theoretical investigation of several ionic extensions of the fundamental Bergman cyclization: electrocyclizations of the penta-1,4-diyne anion, hepta-1,6-diyne cation, and octa-1,7-diyne dication, leveraging the spin-flip formulation of the equation-of-motion coupled cluster theory with single and double substitutions (EOM-SF-CCSD). Though the penta-1,4-diyne anion exhibits a large cyclization barrier of +66 kcal mol-1, cyclization of both the hepta-1,6-diyne cation and octa-1,7-diyne dication along a previously unreported triplet pathway requires relatively low energy. We also identified the presence of significant aromaticity in the triplet diradical products of these two cationic cyclizations.

2.
J Chem Phys ; 156(19): 194306, 2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35597646

RESUMEN

High-level quantum chemical computations have provided significant insight into the fundamental physical nature of non-covalent interactions. These studies have focused primarily on gas-phase computations of small van der Waals dimers; however, these interactions frequently take place in complex chemical environments, such as proteins, solutions, or solids. To better understand how the chemical environment affects non-covalent interactions, we have undertaken a quantum chemical study of π-π interactions in an aqueous solution, as exemplified by T-shaped benzene dimers surrounded by 28 or 50 explicit water molecules. We report interaction energies (IEs) using second-order Møller-Plesset perturbation theory, and we apply the intramolecular and functional-group partitioning extensions of symmetry-adapted perturbation theory (ISAPT and F-SAPT, respectively) to analyze how the solvent molecules tune the π-π interactions of the solute. For complexes containing neutral monomers, even 50 explicit waters (constituting a first and partial second solvation shell) change total SAPT IEs between the two solute molecules by only tenths of a kcal mol-1, while significant changes of up to 3 kcal mol-1 of the electrostatic component are seen for the cationic pyridinium-benzene dimer. This difference between charged and neutral solutes is attributed to large non-additive three-body interactions within solvated ion-containing complexes. Overall, except for charged solutes, our quantum computations indicate that nearby solvent molecules cause very little "tuning" of the direct solute-solute interactions. This indicates that differences in binding energies between the gas phase and solution phase are primarily indirect effects of the competition between solute-solute and solute-solvent interactions.


Asunto(s)
Benceno , Agua , Benceno/química , Soluciones , Solventes , Electricidad Estática , Agua/química
3.
J Chem Phys ; 154(23): 234107, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34241276

RESUMEN

Symmetry-adapted perturbation theory (SAPT) has become an invaluable tool for studying the fundamental nature of non-covalent interactions by directly computing the electrostatics, exchange (steric) repulsion, induction (polarization), and London dispersion contributions to the interaction energy using quantum mechanics. Further application of SAPT is primarily limited by its computational expense, where even its most affordable variant (SAPT0) scales as the fifth power of system size [O(N5)] due to the dispersion terms. The algorithmic scaling of SAPT0 is reduced from O(N5)→O(N4) by replacing these terms with the empirical D3 dispersion correction of Grimme and co-workers, forming a method that may be termed SAPT0-D3. Here, we optimize the damping parameters for the -D3 terms in SAPT0-D3 using a much larger training set than has previously been considered, namely, 8299 interaction energies computed at the complete-basis-set limit of coupled cluster through perturbative triples [CCSD(T)/CBS]. Perhaps surprisingly, with only three fitted parameters, SAPT0-D3 improves on the accuracy of SAPT0, reducing mean absolute errors from 0.61 to 0.49 kcal mol-1 over the full set of complexes. Additionally, SAPT0-D3 exhibits a nearly 2.5× speedup over conventional SAPT0 for systems with ∼300 atoms and is applied here to systems with up to 459 atoms. Finally, we have also implemented a functional group partitioning of the approach (F-SAPT0-D3) and applied it to determine important contacts in the binding of salbutamol to G-protein coupled ß1-adrenergic receptor in both active and inactive forms. SAPT0-D3 capabilities have been added to the open-source Psi4 software.


Asunto(s)
Teoría Cuántica , Algoritmos , Electricidad Estática
4.
J Chem Phys ; 152(18): 184108, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32414239

RESUMEN

PSI4 is a free and open-source ab initio electronic structure program providing implementations of Hartree-Fock, density functional theory, many-body perturbation theory, configuration interaction, density cumulant theory, symmetry-adapted perturbation theory, and coupled-cluster theory. Most of the methods are quite efficient, thanks to density fitting and multi-core parallelism. The program is a hybrid of C++ and Python, and calculations may be run with very simple text files or using the Python API, facilitating post-processing and complex workflows; method developers also have access to most of PSI4's core functionalities via Python. Job specification may be passed using The Molecular Sciences Software Institute (MolSSI) QCSCHEMA data format, facilitating interoperability. A rewrite of our top-level computation driver, and concomitant adoption of the MolSSI QCARCHIVE INFRASTRUCTURE project, makes the latest version of PSI4 well suited to distributed computation of large numbers of independent tasks. The project has fostered the development of independent software components that may be reused in other quantum chemistry programs.

5.
J Am Chem Soc ; 140(41): 13301-13307, 2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30251855

RESUMEN

A comprehensive experimental survey consisting of 36 molecular balances was conducted to compare 18 pairs of S-π versus O-π interactions over a wide range of structural, geometric, and solvent parameters. A strong linear correlation was observed between the folding energies of the sulfur and oxygen balances across the entire library of balance pairs. The more stable interaction systematically switched from the O-π to S-π interaction. Computational studies of bimolecular PhSCH3-arene and PhOCH3-arene complexes were able to replicate the experimental trends in the molecular balances. The change in preference for the O-π to S-π interaction was due to the interplay of stabilizing (dispersion and solvophobic) and destabilizing (exchange-repulsion) terms arising from the differences in size and polarizability of the oxygen and sulfur atoms.

6.
J Chem Theory Comput ; 14(6): 3004-3013, 2018 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-29763302

RESUMEN

We explore the suitability of three popular density functionals (B97-D3, B3LYP-D3, M05-2X) for producing accurate equilibrium geometries of van der Waals (vdW) complexes with diverse binding motifs. For these functionals, optimizations using Dunning's aug-cc-pVDZ basis set best combine accuracy and a reasonable computational expense. Each DFT/aug-cc-pVDZ combination produces optimized equilibrium geometries for 21 small vdW complexes of organic molecules (up to four non-hydrogen atoms total) that agree with high-level CCSD(T)/CBS reference geometries to within ±0.1 Å for the averages of the center-of-mass displacement and the mean least root-mean-squared displacement. The DFT/aug-cc-pVDZ combinations are also able to reproduce the optimal center-of-mass displacements interpolated from CCSD(T)/CBS radial potential energy surfaces in both NBC7x and HBC6 test sets to within ±0.1 Å. We therefore conclude that each of these denisty functional methods, together with the aug-cc-pVDZ basis set, is suitable for producing equilibrium geometries of generic nonbonded complexes.

7.
J Chem Theory Comput ; 14(7): 3504-3511, 2018 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-29771539

RESUMEN

Psi4NumPy demonstrates the use of efficient computational kernels from the open-source Psi4 program through the popular NumPy library for linear algebra in Python to facilitate the rapid development of clear, understandable Python computer code for new quantum chemical methods, while maintaining a relatively low execution time. Using these tools, reference implementations have been created for a number of methods, including self-consistent field (SCF), SCF response, many-body perturbation theory, coupled-cluster theory, configuration interaction, and symmetry-adapted perturbation theory. Furthermore, several reference codes have been integrated into Jupyter notebooks, allowing background, underlying theory, and formula information to be associated with the implementation. Psi4NumPy tools and associated reference implementations can lower the barrier for future development of quantum chemistry methods. These implementations also demonstrate the power of the hybrid C++/Python programming approach employed by the Psi4 program.

8.
J Chem Theory Comput ; 13(1): 86-99, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28068770

RESUMEN

The reliability of explicitly correlated methods for providing benchmark-quality noncovalent interaction energies was tested at various levels of theory and compared to estimates of the complete basis set (CBS) limit. For all systems of the A24 test set, computations were performed using both aug-cc-pVXZ (aXZ; X = D, T, Q, 5) basis sets and specialized cc-pVXZ-F12 (XZ-F12; X = D, T, Q, 5) basis sets paired with explicitly correlated coupled cluster singles and doubles [CCSD-F12n (n = a, b, c)] with triple excitations treated by the canonical perturbative method and scaled to compensate for their lack of explicit correlation [(T**)]. Results show that aXZ basis sets produce smaller errors versus the CBS limit than XZ-F12 basis sets. The F12b ansatz results in the lowest average errors for aTZ and larger basis sets, while F12a is best for double-ζ basis sets. When using aXZ basis sets (X ≥ 3), convergence is achieved from above for F12b and F12c ansatzë and from below for F12a. The CCSD(T**)-F12b/aXZ approach converges quicker with respect to basis than any other combination, although the performance of CCSD(T**)-F12c/aXZ is very similar. Both CCSD(T**)-F12b/aTZ and focal point schemes employing density-fitted, frozen natural orbital [DF-FNO] CCSD(T)/aTZ exhibit similar accuracy and computational cost, and both are much more computationally efficient than large-basis conventional CCSD(T) computations of similar accuracy.


Asunto(s)
Benchmarking , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA