Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Chemistry ; 29(26): e202203590, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36729049

RESUMEN

Molecular processes behind hydrogen evolution reactions can be quite complex. In macroscopic electrochemical cells, it is extremely difficult to elucidate and understand their mechanism. Gas phase models, consisting of a metal ion and a small number of water molecules, provide unique opportunities to understand the reaction pathways in great detail. Hydrogen evolution in clusters consisting of a singly charged metal ion and one to on the order of 50 water molecules has been studied extensively for magnesium, aluminum and vanadium. Such clusters with around 10-20 water molecules are known to eliminate atomic or molecular hydrogen upon mild activation by room temperature black-body radiation. Irradiation with ultraviolet light, by contrast, enables hydrogen evolution already with a single water molecule. Here, we analyze and compare the reaction mechanisms for hydrogen evolution on the ground state as well as excited state potential energy surfaces. Five distinct mechanisms for evolution of atomic or molecular hydrogen are identified and characterized.

2.
Phys Chem Chem Phys ; 23(31): 16816-16826, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34323905

RESUMEN

Hydrated cobalt(i) cluster ions, [Co(H2O)n]+, can decompose the inert nitrous oxide molecule, N2O. Density functional theory suggests that N2O can anchor to Co+ of [Co(N2O)(H2O)n]+ through either O end-on (η1-OL) or N end-on (η1-NL) coordinate mode. The latter is thermodynamically more favorable resulting from a subtle π backdonation from Co+ to N2O. N2O decomposition involves two major processes: (1) redox reaction and (2) N-O bond dissociation. The initial activation of N2O through an electron transfer from Co+ to N2O yields anionic N2O-, which binds to the metal center of [Co2+(N2O-)(H2O)n] also through either O end-on (η1-O) or N end-on (η1-N) mode and is stabilized by water molecules through hydrogen bonding. From η1-O, subsequent N-O bond dissociation to liberate N2, producing [CoO(H2O)n]+, is straightforward via a mechanism that is commonplace for typical metal-catalyzed N2O decompositions. Unexpectedly, the N-O bond dissociation directly from η1-N is also possible and eliminates both N2 and OH, explaining the formation of [CoOH(H2O)n]+ as observed in a previous experimental study. Interestingly, formation of [CoO(H2O)n]+ is kinetically controlled by the initial redox process between Co+ and the O-bound N2O, the activation barriers of which in large water clusters (n ≥ 14) are higher than that of the unexpected N-O bond dissociation from the N-bound structure forming [CoOH(H2O)n]+. This theoretical discovery implies that in the present of water molecules, the metal-catalyzed N2O decomposition starting from an O-bound metal complex is not mandatory.

3.
Angew Chem Int Ed Engl ; 60(31): 16858-16863, 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34008243

RESUMEN

Hydrated singly charged aluminum ions eliminate molecular hydrogen in a size regime from 11 to 24 water molecules. Here we probe the structure of HAlOH+ (H2 O)n-1 , n=9-14, by infrared multiple photon spectroscopy in the region of 1400-2250 cm-1 . Based on quantum chemical calculations, we assign the features at 1940 cm-1 and 1850 cm-1 to the Al-H stretch in five- and six-coordinate aluminum(III) complexes, respectively. Hydrogen bonding towards the hydride is observed, starting at n=12. The frequency of the Al-H stretch is very sensitive to the structure of the hydrogen bonding network, and the large number of isomers leads to significant broadening and red-shifting of the absorption of the hydrogen-bonded Al-H stretch. The hydride can even act as a double hydrogen bond acceptor, shifting the Al-H stretch to frequencies below those of the water bending mode. The onset of hydrogen bonding and disappearance of the free Al-H stretch coincides with the onset of hydrogen evolution.

4.
Chemistry ; 26(1): 331-335, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31657861

RESUMEN

The elementary mechanism of radical-mediated peptide tyrosine nitration, which is a hallmark of post-translational modification of proteins under nitrative stress in vivo, has been elucidated in detail by using an integrated approach that combines the gas-phase synthesis of prototypical molecular tyrosine-containing peptide radical cations, ion-molecule reactions, and isotopic labeling experiments with DFT calculations. This reaction first involves the radical recombination of . NO2 towards the prerequisite phenoxyl radical tautomer of a tyrosine residue, followed by proton rearrangements, finally yielding the stable and regioselective 3-nitrotyrosyl residue product. In contrast, nitration with the π-phenolic radical cation tautomer is inefficient. This first direct experimental evidence for the elementary steps of the radical-mediated tyrosine nitration mechanism in the gas phase provides a fundamental insight into the regioselectivity of biological tyrosine ortho-nitration.

5.
Inorg Chem ; 59(14): 9551-9559, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32584555

RESUMEN

Treatment of the amidinato amidosilylene [L{(Me3Si)2N}Si:] [1, L = PhC(NtBu)2] with a slight excess of borane-tetrahydrofuran complex [BH3·THF] in toluene at room temperature afforded the silylene-borane adduct [L{(Me3Si)2N}Si:→BH3] (2). A triflate substituent was introduced on the boron center by reacting 2 with methyl triflate [MeOTf] (OTf = OSO2CF3) in toluene at room temperature to form [L{(Me3Si)2N}Si:→BH2OTf] (3), with the elimination of CH4 gas. The intramolecular C(sp3)-H borylation and H2 elimination occurred by reacting complex 3 with 1 in refluxing toluene to form a C-B bond in the resulting silylene-boronium ion 5. Complex 5 activated H2 gas or NH3BH3 at room temperature to form silylene-borane adduct 2 and [L{(Me3Si)2N}Si-H]OTf. Additionally, the reaction of 5 with H2 was studied through density functional theory calculations.

6.
Phys Chem Chem Phys ; 22(37): 21393-21402, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32940309

RESUMEN

Long-range electron transfer in proteins can be rationalized as a sequential short-distance electron-hopping processes via amino acid residues having low ionization energy as relay stations. Tyrosine residues can serve as such redox-active intermediates through one-electron oxidation to form a π-radical cation at its phenol side chain. An electron transfer from a vicinal functional group to this π-electron hole completes an elementary step of charge migration. However, transient oxidized/reduced intermediates formed at those relay stations during electron transfer processes have not been observed. In this study, formation of analog reactive intermediates via electron donor-acceptor coupling is observed by using IRMPD action spectroscopy. An elementary charge migration at the molecular level in model tyrosine-containing peptide radical cations [M]˙+ in the gas phase is revealed with its unusual Cα-Cß bond cleavage at the side chain of the N-terminal residue. This reaction is induced by the radical character of the N-terminal amino group (-NH2˙+) resulting from an n → π+ interaction between the nonbonding electron pair of NH2 (n) and the π-electron hole at the Tyr side chain (π+). The formation of -NH2˙+ is supported by the IRMPD spectrum showing a characteristic NH2 scissor vibration coupled with Tyr side-chain stretches at 1577 cm-1. This n → π+ interaction facilitates a dissociative electron transfer with NH2 as the relay station. The occurrence of this side-chain cleavage may be an indicator of the formation of reactive conformers featuring the n → π+ interaction.


Asunto(s)
Electrones , Radicales Libres/química , Péptidos/química , Tirosina/química , Oxidación-Reducción , Conformación Proteica
7.
Phys Chem Chem Phys ; 22(23): 13084-13091, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32490449

RESUMEN

We report herein the first detailed study of the mechanism of redox reactions occurring during the gas-phase dissociative electron transfer of prototypical ternary [CuII(dien)M]˙2+ complexes (M, peptide). The two final products are (i) the oxidized non-zwitterionic π-centered [M]˙+ species with both the charge and spin densities delocalized over the indole ring of the tryptophan residue and with a C-terminal COOH group intact, and (ii) the complementary ion [CuI(dien)]+. Infrared multiple photon dissociation (IRMPD) action spectroscopy and low-energy collision-induced dissociation (CID) experiments, in conjunction with density functional theory (DFT) calculations, revealed the structural details of the mass-isolated precursor and product cations. Our experimental and theoretical results indicate that the doubly positively charged precursor [CuII(dien)M]˙2+ features electrostatic coordination through the anionic carboxylate end of the zwitterionic M moiety. An additional interaction exists between the indole ring of the tryptophan residue and one of the primary amino groups of the dien ligand; the DFT calculations provided the structures of the precursor ion, intermediates, and products, and enabled us to keep track of the locations of the charge and unpaired electron. The dissociative one-electron transfer reaction is initiated by a gradual transition of the M tripeptide from the zwitterionic form in [CuII(dien)M]˙2+ to the non-zwitterionic M intermediate, through a cascade of conformational changes and proton transfers. In the next step, the highest energy intermediate is formed; here, the copper center is 5-coordinate with coordination from both the carboxylic acid group and the indole ring. A subsequent switch back to 4-coordination to an intermediate IM1, where attachment to GGW occurs through the indole ring only, creates the structure that ultimately undergoes dissociation.


Asunto(s)
Complejos de Coordinación/química , Cobre/química , Péptidos/química , Triptófano/química , Teoría Funcional de la Densidad , Transporte de Electrón , Estructura Molecular , Fotones , Espectrofotometría Infrarroja , Triptófano/análogos & derivados
8.
J Am Chem Soc ; 141(44): 17629-17636, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31600074

RESUMEN

This study describes the first use of a silicon(II) complex, NHC-parent silyliumylidene cation complex [(IMe)2SiH]I (1, IMe = :C{N(Me)C(Me)}2) as a versatile catalyst in organic synthesis. Complex 1 (loading: 10 mol %) was shown to act as an efficient catalyst (reaction time: 0.08 h, yield: 94%, TOF = 113.2 h-1; reaction time: 0.17 h, yield: 98%, TOF = 58.7 h-1) for the selective reduction of CO2 with pinacolborane (HBpin) to form the primarily reduced formoxyborane [pinBOC(═O)H]. The activity is better than the currently available base-metal catalysts used for this reaction. It also catalyzed the chemo- and regioselective hydroboration of carbonyl compounds and pyridine derivatives to form borate esters and N-boryl-1,4-dihydropyridine derivatives with quantitative conversions, respectively. Mechanistic studies show that the silicon(II) center in complex 1 activated the substrates and then mediated the catalytic hydroboration. In addition, complex 1 was slightly converted into the NHC-borylsilyliumylidene complex [(IMe)2SiBpin]I (3) in the catalysis, which was also able to mediate the catalytic hydroboration.

9.
Chemistry ; 25(43): 10165-10171, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31132183

RESUMEN

Understanding the intrinsic properties of the hydrated carbon dioxide radical anions CO2 .- (H2 O)n is relevant for electrochemical carbon dioxide functionalization. CO2 .- (H2 O)n (n=2-61) is investigated by using infrared action spectroscopy in the 1150-2220 cm-1 region in an ICR (ion cyclotron resonance) cell cooled to T=80 K. The spectra show an absorption band around 1280 cm-1 , which is assigned to the symmetric C-O stretching vibration νs . It blueshifts with increasing cluster size, reaching the bulk value, within the experimental linewidth, for n=20. The antisymmetric C-O vibration νas is strongly coupled with the water bending mode ν2 , causing a broad feature at approximately 1650 cm-1 . For larger clusters, an additional broad and weak band appears above 1900 cm-1 similar to bulk water, which is assigned to a combination band of water bending and libration modes. Quantum chemical calculations provide insight into the interaction of CO2 .- with the hydrogen-bonding network.

10.
Anal Chem ; 90(6): 4089-4097, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29455521

RESUMEN

Naproxen is one of the most consumed nonsteroidal anti-inflammatory drugs and marketed as S-naproxen since R-naproxen is hepatotoxic. In this study, chiral recognition of naproxen has been investigated by tandem mass spectrometry (MS/MS). Among all diastereomeric complexes formed between naproxen and the examined chiral selectors, including cyclodextrins (α/ß/γ-CD), modified phenylalanines ( N-acetyl-phenylalanine, N-t-butoxycarbonyl-phenylalanine, N-9-fluorenylmethyloxycarbonyl-phenylalanine), amino acids (Trp, Phe, Tyr, His), glucose, tartaric acid, and vancomycin, a novel binuclear metal bound diastereomeric complexes [(M(II))2( S/ R-naproxen)(l-His)2-3H]+ (M = Cu, Ni, or Co with Cu being the best) could allow effective identification of the absolute configuration of naproxen and determination of its enantiomeric excess ( ee) through MS/MS analysis. The key candidate structure of [(Cu(II))2( S/ R-naproxen)(l-His)2-3H]+ has been revealed by means of collision-induced dissociation, ion mobility mass spectrometry and density functional theory calculations, indicating an interesting and unusual self-assembled compact geometry with the two Cu(II) ions bridged closely together (Cu-Cu distance is 3.04 Å) by the carboxylate groups of the two histidines. It was shown that the difference in dissociation efficiency between the two diastereomers was attributed to the interaction between the NH2 bond of the amino group of one histidine and the naphthyl ring of naproxen. The present report is the first to observe and characterize the complex of (Cu(II))2(His)2 with aromatic acid, which could contribute to the chiral recognition of other chiral aromatic acids, design of catalysts based on binuclear copper bound complex, as well as the better understanding of metal ion complexation by His or His-containing ligands.


Asunto(s)
Antiinflamatorios no Esteroideos/análisis , Complejos de Coordinación/química , Cobre/química , Histidina/química , Naproxeno/análisis , Espectrometría de Masas en Tándem/métodos , Antiinflamatorios no Esteroideos/química , Modelos Moleculares , Naproxeno/química , Estereoisomerismo , Termodinámica
11.
Chem Rec ; 18(1): 20-44, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28650100

RESUMEN

Radical-mediated dissociations of peptide radical cations have intriguing unimolecular gas phase chemistry, with cleavages of almost every bond of the peptide backbone and amino acid side chains in a competitive and apparently "stochastic" manner. Challenges of unraveling mechanistic details are related to complex tautomerizations prior to dissociations. Recent conjunctions of experimental and theoretical investigations have revealed the existence of non-interconvertible isobaric tautomers with a variety of radical-site-specific initial structures, generated from dissociative electron transfer of ternary metal-ligand-peptide complexes. Their reactivity is influenced by the tautomerization barriers, perturbing the nature, location, or number of radical and charge site(s), which also determine the energetics and dynamics of the subsequent radical-mediated dissociatons. The competitive radical- and charge-induced dissociations are extremely dependent on charge density. Charge sequesting can reduce the charge densities on the peptide backbone and hence enhance the flexibility of structural rearrangement. Analysing the structures of precursors, intermediates and products has led to the discovery of many novel radical migration prior to peptide backbone and/or side chain fragmentations. Upon these successes, scientists will be able to build peptide cationic analogues/tautomers having a variety of well-defined radical sites.


Asunto(s)
Péptidos/química , Cationes/química , Radicales Libres/química
12.
Phys Chem Chem Phys ; 20(16): 10838-10845, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29473922

RESUMEN

A significant fraction of nitrate in the troposphere is formed in the reactions of HNO3 with the carbonate radical anion CO3˙- and the mono- and dihydrated species CO3˙-(H2O)1,2. A reaction mechanism was proposed in earlier flow reactor studies, which is investigated here in more detail by quantum chemical calculations and experimental reactivity studies of mass selected ions under ultra-high vacuum conditions. Bare CO3˙- forms NO3-(OH˙) as well as NO3-, with a total rate coefficient of 1.0 × 10-10 cm3 s-1. CO3˙-(H2O) in addition affords stabilization of the NO3-(HCO3˙) collision complex, and thermalized CO3˙-(H2O) reacts with a total rate coefficient of 6.3 × 10-10 cm3 s-1. A second solvent molecule quenches the reaction, and only black-body radiation induced dissociation is observed for CO3˙-(H2O)2, with an upper limit of 6.0 × 10-11 cm3 s-1 for any potential bimolecular reaction channel. The rate coefficients obtained under ultra-high vacuum conditions are smaller than in the earlier flow reactor studies, due to the absence of stabilizing collisions, which also has a strong effect on the product branching ratio. Quantum chemical calculations corroborate the mechanism proposed by Möhler and Arnold. The reaction proceeds through a proton-transferred NO3-(HCO3˙) collision complex, which can rearrange to NO3-(OH˙)(CO2). The weakly bound CO2 easily evaporates, followed by evaporation of the more strongly attached OH˙, if sufficient energy is available.

13.
J Phys Chem A ; 121(1): 192-197, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-27960061

RESUMEN

The carbonate radical anion CO3•- is a key intermediate in tropospheric anion chemistry. Despite its radical character, only a small number of reactions have been reported in the literature. Here we investigate the gas-phase reactions of CO3•- and CO3•-(H2O) with HCl under ultrahigh vacuum conditions. Bare CO3•- forms OHCl•- with a rate constant of 4.2 × 10-12 cm3 s-1, which corresponds to an efficiency of only 0.4%. Hydration accelerates the reaction, and ligand exchange of H2O against HCl proceeds with a rate of 2.7 × 10-10 cm3 s-1. Quantum chemical calculations reveal that OHCl•- is best described as an OH• hydrogen bonded to Cl-, while the ligand exchange product is Cl-(HCO3•). Under tropospheric conditions, where CO3•-(H2O) is the dominant species, Cl-(HCO3•) is efficiently formed. These reactions must be included in models of tropospheric anion chemistry.

14.
Chemistry ; 22(36): 12684-7, 2016 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-27400953

RESUMEN

Gas-phase reactions of CO3 (.-) with formic acid are studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Signal loss indicates the release of a free electron, with the formation of neutral reaction products. This is corroborated by adding traces of SF6 to the reaction gas, which scavenges 38 % of the electrons. Quantum chemical calculations of the reaction potential energy surface provide a reaction path for the formation of neutral carbon dioxide and water as the thermochemically favored products. From the literature, it is known that free electrons in the troposphere attach to O2 , which in turn transfer the electron to O3 . O3 (.-) reacts with CO2 to form CO3 (.-) . The reaction reported here formally closes the catalytic cycle for the oxidation of formic acid with ozone, catalyzed by free electrons.

15.
Phys Chem Chem Phys ; 18(34): 23528-37, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27498686

RESUMEN

The recombination reactions of gas-phase hydrated electrons (H2O)n˙(-) with CO2 and O2, as well as the charge exchange reaction of CO2˙(-)(H2O)n with O2, were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry in the temperature range T = 80-300 K. Comparison of the rate constants with collision models shows that CO2 reacts with 50% collision efficiency, while O2 reacts considerably slower. Nanocalorimetry yields internally consistent results for the three reactions. Converted to room temperature condensed phase, this yields hydration enthalpies of CO2˙(-) and O2˙(-), ΔHhyd(CO2˙(-)) = -334 ± 44 kJ mol(-1) and ΔHhyd(O2˙(-)) = -404 ± 28 kJ mol(-1). Quantum chemical calculations show that the charge exchange reaction proceeds via a CO4˙(-) intermediate, which is consistent with a fully ergodic reaction and also with the small efficiency. Ab initio molecular dynamics simulations corroborate this picture and indicate that the CO4˙(-) intermediate has a lifetime significantly above the ps regime.

16.
J Phys Chem A ; 119(12): 2780-92, 2015 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-25738586

RESUMEN

Reductions of O2, CO2, and CH3CN by the half-reaction of the Mg(II)/Mg(I) couple (Mg(2+) + e(-) → Mg(+•)) confined in a nanosized water droplet ([Mg(H2O)16](•+)) have been examined theoretically by means of density functional theory based molecular dynamics methods. The present works have revealed many intriguing aspects of the reaction dynamics of the water clusters within several picoseconds or even in subpicoseconds. The reduction of O2 requires an overall doublet spin state of the system. The reductions of CO2 and CH3CN are facilitated by their bending vibrations and the electron-transfer processes complete within 0.5 ps. For all reactions studied, the radical anions, i.e., O2(•-), CO2(•-), and CH3CN(•-), are initially formed on the cluster surface. O2(•-) and CO2(•-) can integrate into the clusters due to their high hydrophilicity. They are either solvated in the second solvation shell of Mg(2+) as a solvent-separated ion pair (ssip) or directly coordinated to Mg(2+) as a contact-ion pair (cip) having the (1)η-[MgO2](•+) and (1)η-[MgOCO](•+) coordination modes. The (1)η-[MgO2](•+) core is more crowded than the (1)η-[MgOCO](•+) core. The reaction enthalpies of the formation of ssip and cip of [Mg(CO2)(H2O)16](•+) are -36 ± 4 kJ mol(-1) and -30 ± 9 kJ mol(-1), respectively, which were estimated based on the average temperature changes during the ion-molecule reaction between CO2 and [Mg(H2O)16](•+). The values for the formation of ssip and cip of [Mg(O2)(H2O)16](•+) are estimated to be -112 ± 18 kJ mol(-1) and -128 ± 28 kJ mol(-1), respectively. CH3CN(•-) undergoes protonation spontaneously to form the hydrophobic [CH3CN, H](•). Both CH3CN and [CH3CN, H](•) cannot efficiently penetrate into the clusters with activation barriers of 22 kJ mol(-1) and ∼40 kJ mol(-1), respectively. These results provide fundamental insights into the solvation dynamics of the Mg(2+)/Mg(•+) couple on the molecular level.

17.
J Phys Chem A ; 119(22): 5566-78, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-25945973

RESUMEN

Reactions of [M(H2O)n](+), M = Cr, Mn, Fe, Co, Ni, Cu, and Zn, n < 50, with CH3CN are studied in the gas phase by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Sequential uptake of 4-6 acetonitrile molecules is observed for all metals. Rate constants show a weak dependence on both the metal and the number of acetonitrile molecules already in the cluster. Nanocalorimetry yields the enthalpy of the first reaction step. For most metals, this is consistent with a ligand exchange of water against acetonitrile. For M = Cr, however, the strong exothermicity of ΔE(nc) = -195 ± 26 kJ mol(-1) suggests an electron transfer from Cr(+) to CH3CN. Exclusively for M = Zn, a relatively slow oxidation of the metal center to Zn(2+), with formation of ZnOH(+) and release of CH3CNH(•) or CH3CHN(•) is observed. Density functional theory molecular dynamics simulations and geometry optimizations show that charge transfer from Zn(+) to CH3CN as well as the subsequent proton transfer are associated with a barrier.

18.
J Am Soc Mass Spectrom ; 35(5): 999-1006, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38587294

RESUMEN

Previous mass spectrometric (MS) studies demonstrated that singly charged hydration clusters of manganese ions [Mn(H2O)n]+ were, on one hand, highly reactive toward intracluster water insertion but, on the other hand, inert toward nitrous oxide activation. This contrast in reactivity has been rationalized by our present theoretical investigation for the interconversion between the pristine Mn(I) monovalent form as a monatomic ion in [MnI(H2O)n]+ and the oxidized Mn(III) trivalent form as a hydride-hydroxide in [HMnIIIOH(H2O)n-1], as well as their reactivity toward nitrous oxide activation. Our theoretical interpretations are supported with quantum chemical calculations based on density functional theory (DFT), performed systematically for the cluster-size range of n = 1 - 12. Our DFT results show that water insertion is kinetically and thermodynamically favorable for n ≥ 8, suggesting [HMnIIIOH(H2O)n-1]+ is the predominant form, as observed in previous MS experiments. While [MnI(H2O)n]+ is capable of N2O reduction, the process of which is highly exothermic, similar reactions are unfavorable with [HMnIIIOH(H2O)n-1]+, which can only form weakly bound adducts with N2O. This work demonstrates the masking effect of water molecules over the high reactivity of the hydrated Mn(I) center and sheds light on the potential roles of water in transition metal systems.

19.
Nat Commun ; 15(1): 2590, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519505

RESUMEN

Group 1 elements exhibit the lowest electronegativity values in the Periodic Table. The chemical reduction of Group 1 metal cations M+ to M(0) is extremely challenging. Common tetraaryl borates demonstrate limited redox properties and are prone to decomposition upon oxidation. In this study, by employing simple yet versatile bipyridines as ligands, we synthesized a series of redox-active borate anions characterized by NMR and X-ray single-crystal diffraction. Notably, the borate anion can realize the reduction of Li+, generating elemental lithium metal and boron radical, thereby demonstrating its potent reducing ability. Furthermore, it can serve as a powerful two-electron-reducing reagent and be readily applied in various reductive homo-coupling reactions and Birch reduction of acridine. Additionally, this borate anion demonstrates its catalytic ability in the selective two-electron reduction of CO2 into CO.

20.
J Phys Chem A ; 117(6): 1059-68, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22697598

RESUMEN

In this study, we used collision-induced dissociation (CID) to examine the gas-phase fragmentations of [G(n)W](•+) (n = 2-4) and [GXW](•+) (X = C, S, L, F, Y, Q) species. The C(ß)-C(γ) bond cleavage of a C-terminal decarboxylated tryptophan residue ([M - CO(2)](•+)) can generate [M - CO(2) - 116](+), [M - CO(2) - 117](•+), and [1H-indole](•+) (m/z 117) species as possible product ions. Competition between the formation of [M - CO(2) - 116](+) and [1H-indole](•+) systems implies the existence of a proton-bound dimer formed between the indole ring and peptide backbone. Formation of such a proton-bound dimer is facile via a protonation of the tryptophan γ-carbon atom as suggested by density functional theory (DFT) calculations. DFT calculations also suggested the initially formed ion 2, the decarboxylated species that is active against C(ß)-C(γ) bond cleavage, can efficiently isomerize to form a more stable π-radical isomer (ion 9) as supported by Rice-Ramsperger-Kassel-Marcus (RRKM) modeling. The C(ß)-C(γ) bond cleavage of a tryptophan residue also can occur directly from peptide radical cations containing a basic residue. CID of [WG(n)R](•+) (n = 1-3) radical cations consistently resulted in predominant formation of [M - 116](+) product ions. It appears that the basic arginine residue tightly sequesters the proton and allows the charge-remote C(ß)-C(γ) bond cleavage to prevail over the charge-directed one. DFT calculations predicted that the barrier for the former is 6.2 kcal mol(-1) lower than that of the latter. Furthermore, the pathway involving a salt-bridge intermediate also was accessible during such a bond cleavage event.


Asunto(s)
Péptidos/química , Triptófano/química , Cationes/química , Radicales Libres/química , Modelos Moleculares , Estructura Molecular , Teoría Cuántica , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA