RESUMEN
Taniborbactam, a bicyclic boronate ß-lactamase inhibitor with activity against Klebsiella pneumoniae carbapenemase (KPC), Verona integron-encoded metallo-ß-lactamase (VIM), New Delhi metallo-ß-lactamase (NDM), extended-spectrum beta-lactamases (ESBLs), OXA-48, and AmpC ß-lactamases, is under clinical development in combination with cefepime. Susceptibility of 200 previously characterized carbapenem-resistant K. pneumoniae and 197 multidrug-resistant (MDR) Pseudomonas aeruginosa to cefepime-taniborbactam and comparators was determined by broth microdilution. For K. pneumoniae (192 KPC; 7 OXA-48-related), MIC90 values of ß-lactam components for cefepime-taniborbactam, ceftazidime-avibactam, and meropenem-vaborbactam were 2, 2, and 1 mg/L, respectively. For cefepime-taniborbactam, 100% and 99.5% of isolates of K. pneumoniae were inhibited at ≤16 mg/L and ≤8 mg/L, respectively, while 98.0% and 95.5% of isolates were susceptible to ceftazidime-avibactam and meropenem-vaborbactam, respectively. For P. aeruginosa, MIC90 values of ß-lactam components of cefepime-taniborbactam, ceftazidime-avibactam, ceftolozane-tazobactam, and meropenem-vaborbactam were 16, >8, >8, and >4 mg/L, respectively. Of 89 carbapenem-susceptible isolates, 100% were susceptible to ceftolozane-tazobactam, ceftazidime-avibactam, and cefepime-taniborbactam at ≤8 mg/L. Of 73 carbapenem-intermediate/resistant P. aeruginosa isolates without carbapenemases, 87.7% were susceptible to ceftolozane-tazobactam, 79.5% to ceftazidime-avibactam, and 95.9% and 83.6% to cefepime-taniborbactam at ≤16 mg/L and ≤8 mg/L, respectively. Cefepime-taniborbactam at ≤16 mg/L and ≤8 mg/L, respectively, was active against 73.3% and 46.7% of 15 VIM- and 60.0% and 35.0% of 20 KPC-producing P. aeruginosa isolates. Of all 108 carbapenem-intermediate/resistant P. aeruginosa isolates, cefepime-taniborbactam was active against 86.1% and 69.4% at ≤16 mg/L and ≤8 mg/L, respectively, compared to 59.3% for ceftolozane-tazobactam and 63.0% for ceftazidime-avibactam. Cefepime-taniborbactam had in vitro activity comparable to ceftazidime-avibactam and greater than meropenem-vaborbactam against carbapenem-resistant K. pneumoniae and carbapenem-intermediate/resistant MDR P. aeruginosa.
Asunto(s)
Antibacterianos , Cefepima , Farmacorresistencia Bacteriana Múltiple , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Inhibidores de beta-Lactamasas , Cefepima/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Antibacterianos/farmacología , Inhibidores de beta-Lactamasas/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Cefalosporinas/farmacología , Humanos , beta-Lactamasas/metabolismo , beta-Lactamasas/genética , Ácidos Borónicos/farmacología , Carbapenémicos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ceftazidima/farmacología , Ácidos Borínicos/farmacología , Combinación de Medicamentos , Compuestos de Azabiciclo/farmacología , Ácidos CarboxílicosRESUMEN
OBJECTIVES: Taniborbactam is a boronate-based ß-lactamase inhibitor in clinical development in combination with cefepime. METHODS: Cefepime-taniborbactam and comparator broth microdilution MICs were determined for patient isolates of Enterobacterales (nâ=â20â725) and Pseudomonas aeruginosa (nâ=â7919) collected in 59 countries from 2018 to 2022. Taniborbactam was tested at a fixed concentration of 4 mg/L. Isolates with cefepime-taniborbactam MICsâ≥â16 mg/L underwent WGS. ß-Lactamase genes were identified in additional meropenem-resistant isolates by PCR/Sanger sequencing. RESULTS: Taniborbactam reduced the cefepime MIC90 value for all Enterobacterales from >16 to 0.25 mg/L (>64-fold). At ≤16 mg/L, cefepime-taniborbactam inhibited 99.5% of all Enterobacterales isolates; >95% of isolates with MDR and ceftolozane-tazobactam-resistant phenotypes; â≥â89% of isolates with meropenem-resistant and difficult-to-treat-resistant (DTR) phenotypes; >80% of isolates with meropenem-vaborbactam-resistant and ceftazidime-avibactam-resistant phenotypes; 100% of KPC-positive, 99% of OXA-48-like-positive, 99% of ESBL-positive, 97% of acquired AmpC-positive, 95% of VIM-positive and 76% of NDM-positive isolates. Against P. aeruginosa, taniborbactam reduced the cefepime MIC90 value from 32 to 8 mg/L (4-fold). At ≤16 mg/L, cefepime-taniborbactam inhibited 96.5% of all P. aeruginosa isolates; 85% of meropenem-resistant phenotype isolates; 80% of isolates with MDR and meropenem-vaborbactam-resistant phenotypes; >70% of isolates with DTR, ceftazidime-avibactam-resistant and ceftolozane-tazobactam-resistant phenotypes; and 82% of VIM-positive isolates. Multiple potential mechanisms of resistance, including carriage of IMP, or alterations in PBP3 (ftsI), porins (decreased permeability) and efflux (up-regulation) were present in most isolates with cefepime-taniborbactam MICsâ≥â16 mg/L. CONCLUSIONS: Cefepime-taniborbactam exhibited potent in vitro activity against Enterobacterales and P. aeruginosa, and inhibited most carbapenem-resistant isolates, including those carrying serine carbapenemases or NDM/VIM MBLs.
RESUMEN
Siderophores are iron-chelating molecules that solubilize Fe3+ for microbial utilization and facilitate colonization or infection of eukaryotes by liberating host iron for bacterial uptake. By fluorescently labeling membrane receptors and binding proteins, we created 20 sensors that detect, discriminate, and quantify apo- and ferric siderophores. The sensor proteins originated from TonB-dependent ligand-gated porins (LGPs) of Escherichia coli (Fiu, FepA, Cir, FhuA, IutA, BtuB), Klebsiella pneumoniae (IroN, FepA, FyuA), Acinetobacter baumannii (PiuA, FepA, PirA, BauA), Pseudomonas aeruginosa (FepA, FpvA), and Caulobacter crescentus (HutA) from a periplasmic E. coli binding protein (FepB) and from a human serum binding protein (siderocalin). They detected ferric catecholates (enterobactin, degraded enterobactin, glucosylated enterobactin, dihydroxybenzoate, dihydroxybenzoyl serine, cefidericol, MB-1), ferric hydroxamates (ferrichromes, aerobactin), mixed iron complexes (yersiniabactin, acinetobactin, pyoverdine), and porphyrins (hemin, vitamin B12). The sensors defined the specificities and corresponding affinities of the LGPs and binding proteins and monitored ferric siderophore and porphyrin transport by microbial pathogens. We also quantified, for the first time, broad recognition of diverse ferric complexes by some LGPs, as well as monospecificity for a single metal chelate by others. In addition to their primary ferric siderophore ligands, most LGPs bound the corresponding aposiderophore with â¼100-fold lower affinity. These sensors provide insights into ferric siderophore biosynthesis and uptake pathways in free-living, commensal, and pathogenic Gram-negative bacteria.
Asunto(s)
Proteínas Bacterianas , Colorantes Fluorescentes , Bacterias Gramnegativas Quimiolitotróficas , Sideróforos , Acinetobacter baumannii , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/análisis , Proteínas Bacterianas/metabolismo , Caulobacter crescentus , Enterobactina/análisis , Enterobactina/metabolismo , Escherichia coli/metabolismo , Colorantes Fluorescentes/química , Bacterias Gramnegativas Quimiolitotróficas/química , Bacterias Gramnegativas Quimiolitotróficas/genética , Bacterias Gramnegativas Quimiolitotróficas/metabolismo , Humanos , Hierro/metabolismo , Klebsiella pneumoniae , Sideróforos/análisis , Sideróforos/metabolismoRESUMEN
The novel clinical-stage ß-lactam-ß-lactamase inhibitor combination, cefepime-taniborbactam, demonstrates promising activity toward many Gram-negative bacteria producing class A, B, C, and/or D ß-lactamases. We tested this combination against a panel of 150 Burkholderia cepacia complex (Bcc) and Burkholderia gladioli strains. The addition of taniborbactam to cefepime shifted cefepime minimum inhibitory concentrations toward the provisionally susceptible range in 59% of the isolates tested. Therefore, cefepime-taniborbactam possessed similar activity as first-line agents, ceftazidime and trimethoprim-sulfamethoxazole, supporting further development.
Asunto(s)
Complejo Burkholderia cepacia , Burkholderia gladioli , Fibrosis Quística , Humanos , Estados Unidos , Cefepima/farmacología , Antibacterianos/farmacología , Fibrosis Quística/microbiología , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas , Pruebas de Sensibilidad MicrobianaRESUMEN
Taniborbactam is a novel cyclic boronate ß-lactamase inhibitor in clinical development in combination with cefepime. We assessed the in vitro activity of cefepime-taniborbactam and comparators against a 2018-2020 collection of Enterobacterales (n = 13,731) and Pseudomonas aeruginosa (n = 4,619) isolates cultured from infected patients attending hospitals in 56 countries. MICs were determined by CLSI broth microdilution. Taniborbactam was tested at a fixed concentration of 4 µg/mL. Isolates with cefepime-taniborbactam MICs of ≥16 µg/mL underwent whole-genome sequencing. ß-lactamase genes were identified in meropenem-resistant isolates by PCR/Sanger sequencing. Against Enterobacterales, taniborbactam reduced the cefepime MIC90 value by >64-fold (from >16 to 0.25 µg/mL). At ≤16 µg/mL, cefepime-taniborbactam inhibited 99.7% of all Enterobacterales isolates; >97% of isolates with multidrug-resistant (MDR) and ceftolozane-tazobactam-resistant phenotypes; ≥90% of isolates with meropenem-resistant, difficult-to-treat-resistant (DTR), meropenem-vaborbactam-resistant, and ceftazidime-avibactam-resistant phenotypes; 100% of VIM-positive, AmpC-positive, and KPC-positive isolates; 98.7% of extended-spectrum ß-lactamase (ESBL)-positive; 98.8% of OXA-48-like-positive; and 84.6% of NDM-positive isolates. Against P. aeruginosa, taniborbactam reduced the cefepime MIC90 value by 4-fold (from 32 to 8 µg/mL). At ≤16 µg/mL, cefepime-taniborbactam inhibited 97.4% of all P. aeruginosa isolates; ≥85% of isolates with meropenem-resistant, MDR, and meropenem-vaborbactam-resistant phenotypes; >75% of isolates with DTR, ceftazidime-avibactam-resistant, and ceftolozane-tazobactam-resistant phenotypes; and 87.4% of VIM-positive isolates. Multiple potential mechanisms, including carriage of IMP, certain alterations in PBP3, permeability (porin) defects, and possibly, upregulation of efflux were present in most isolates with cefepime-taniborbactam MICs of ≥16 µg/mL. We conclude that cefepime-taniborbactam exhibited potent in vitro activity against Enterobacterales and P. aeruginosa and inhibited most carbapenem-resistant isolates, including those carrying serine carbapenemases or NDM/VIM metallo-ß-lactamases (MBLs).
Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Cefepima/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Meropenem/farmacología , Tazobactam/farmacología , beta-Lactamasas/genética , Pseudomonas aeruginosa , Bacterias Gramnegativas , Compuestos de Azabiciclo/farmacología , Pruebas de Sensibilidad MicrobianaRESUMEN
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Asunto(s)
Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Bacterias Gramnegativas/metabolismo , Hierro/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/química , Compuestos Férricos/química , Compuestos Férricos/metabolismo , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/patogenicidad , Humanos , Hierro/química , Proteínas de la Membrana/química , Modelos Moleculares , Sideróforos/química , Sideróforos/metabolismoRESUMEN
Gram-negative bacteria possess an asymmetric outer membrane (OM) composed primarily of lipopolysaccharides (LPSs) on the outer leaflet and phospholipids (PLs) on the inner leaflet. The loss of this asymmetry due to mutations in the LPS biosynthesis or transport pathways causes the externalization of PLs to the outer leaflet of the OM and leads to OM permeability defects. Here, we used metabolic labeling to detect a compromised OM in intact bacteria. Phosphatidylcholine synthase expression in Escherichia coli allowed for the incorporation of exogenous propargylcholine into phosphatidyl(propargyl)choline and exogenous 1-azidoethyl-choline (AECho) into phosphatidyl(azidoethyl)choline (AEPC), as confirmed by LC/MS analyses. A fluorescent copper-free click reagent poorly labeled AEPC in intact wild-type cells but readily labeled AEPC from lysed cells. Fluorescence microscopy and flow cytometry analyses confirmed the absence of significant AEPC labeling from intact wild-type E. coli strains and revealed significant AEPC labeling in an E. coli LPS transport mutant (lptD4213) and an LPS biosynthesis mutant (E. coli lpxC101). Our results suggest that metabolic PL labeling with AECho is a promising tool for detecting a compromised bacterial OM, revealing aberrant PL externalization, and identifying or characterizing novel cell-active inhibitors of LPS biosynthesis or transport.
Asunto(s)
Membrana Externa Bacteriana/metabolismo , Escherichia coli/citología , Escherichia coli/metabolismo , Microscopía Fluorescente , Fosfolípidos/metabolismo , Transporte Biológico , Coloración y EtiquetadoRESUMEN
As shifts in the epidemiology of ß-lactamase-mediated resistance continue, carbapenem-resistant Enterobacterales (CRE) and carbapenem-resistant Pseudomonas aeruginosa (CRPA) are the most urgent threats. Although approved ß-lactam (BL)-ß-lactamase inhibitor (BLI) combinations address widespread serine ß-lactamases (SBLs), such as CTX-M-15, none provide broad coverage against either clinically important serine-ß-lactamases (KPC, OXA-48) or clinically important metallo-ß-lactamases (MBLs; e.g., NDM-1). VNRX-5133 (taniborbactam) is a new cyclic boronate BLI that is in clinical development combined with cefepime for the treatment of infections caused by ß-lactamase-producing CRE and CRPA. Taniborbactam is the first BLI with direct inhibitory activity against Ambler class A, B, C, and D enzymes. From biochemical and structural analyses, taniborbactam exploits substrate mimicry while employing distinct mechanisms to inhibit both SBLs and MBLs. It is a reversible covalent inhibitor of SBLs with slow dissociation and a prolonged active-site residence time (half-life, 30 to 105 min), while in MBLs, it behaves as a competitive inhibitor, with inhibitor constant (Ki ) values ranging from 0.019 to 0.081 µM. Inhibition is achieved by mimicking the transition state structure and exploiting interactions with highly conserved active-site residues. In microbiological testing, taniborbactam restored cefepime activity in 33/34 engineered Escherichia coli strains overproducing individual enzymes covering Ambler classes A, B, C, and D, providing up to a 1,024-fold shift in the MIC. Addition of taniborbactam restored the antibacterial activity of cefepime against all 102 Enterobacterales clinical isolates tested and 38/41 P. aeruginosa clinical isolates tested with MIC90s of 1 and 4 µg/ml, respectively, representing ≥256- and ≥32-fold improvements, respectively, in antibacterial activity over that of cefepime alone. The data demonstrate the potent, broad-spectrum rescue of cefepime activity by taniborbactam against clinical isolates of CRE and CRPA.
Asunto(s)
Antibacterianos/farmacología , Ácidos Borínicos/farmacología , Ácidos Carboxílicos/farmacología , Inhibidores de beta-Lactamasas/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cefepima/farmacología , Pruebas de Sensibilidad Microbiana , Estructura Secundaria de Proteína , Pseudomonas aeruginosa/efectos de los fármacosRESUMEN
3-Deoxy-d-manno-oct-2-ulosonic acid (Kdo) is an essential component of lipopolysaccharides (LPS) in the Gram-negative bacterial outer membrane. Metabolic labeling of Escherichia coli LPS with 8-azido-3,8-dideoxy-d-manno-oct-2-ulosonic acid (Kdo-N3 ) has been reported but is inefficient. For optimization, it is important to understand how exogenous Kdo-N3 enters the cytoplasm. Based on similarities between Kdo and sialic acids, we proposed and verified that the sialic acid transporter NanT imports exogenous Kdo-N3 into E. coli. We demonstrated that E. coli ΔnanT were not labeled with Kdo-N3 , while expression of NanT in the ΔnanT mutant restored Kdo-N3 incorporation. Induced NanT expression in a strain lacking Kdo biosynthesis led to higher exogenous Kdo incorporation and restoration of full-length core-LPS, suggesting that NanT also transports Kdo. While Kdo-N3 incorporation was observed in strains having NanT, it was not detected in Pseudomonas aeruginosa and Acinetobacter baumannii, which lack nanT. However, heterologous expression of E. coli NanT in P. aeruginosa enabled Kdo-N3 incorporation and labeling, though this led to abnormal morphology and growth arrest. NanT seems to define which bacteria can be labeled with Kdo-N3 , provides opportunities to enhance Kdo-N3 labeling efficiency and spectrum, and raises the possibility of Kdo biosynthetic bypass where exogenous Kdo is present, perhaps even in vivo.
Asunto(s)
Azidas/farmacología , Escherichia coli K12/fisiología , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transportadores de Anión Orgánico/metabolismo , Azúcares Ácidos/farmacología , Simportadores/metabolismo , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/fisiología , Membrana Celular/metabolismo , Citoplasma/metabolismo , Escherichia coli K12/efectos de los fármacos , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Colorantes Fluorescentes/farmacología , Lipopolisacáridos/metabolismo , Proteínas de Transporte de Membrana/genética , Ácidos Neuramínicos/farmacología , Transportadores de Anión Orgánico/genética , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiología , Simportadores/genéticaRESUMEN
Antibiotic hypersensitive bacterial mutants (e.g., Escherichia coliimp) are used to investigate intrinsic resistance and are exploited in antibacterial discovery to track weak antibacterial activity of novel inhibitor compounds. Pseudomonas aeruginosa Z61 is one such drug-hypersusceptible strain generated by chemical mutagenesis, although the genetic basis for hypersusceptibility is not fully understood. Genome sequencing of Z61 revealed nonsynonymous single-nucleotide polymorphisms in 153 genes relative to its parent strain, and three candidate mutations (in oprM, ampC, and lptE) predicted to mediate hypersusceptibility were characterized. The contribution of these mutations was confirmed by genomic restoration of the wild-type sequences, individually or in combination, in the Z61 background. Introduction of the lptE mutation or genetic inactivation of oprM and ampC genes alone or together in the parent strain recapitulated drug sensitivities. This showed that disruption of oprM (which encodes a major outer membrane efflux pump channel) increased susceptibility to pump substrate antibiotics, that inactivation of the inducible ß-lactamase gene ampC contributed to ß-lactam susceptibility, and that mutation of the lipopolysaccharide transporter gene lptE strongly altered the outer membrane permeability barrier, causing susceptibility to large antibiotics such as rifampin and also to ß-lactams.
Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Lipopolisacáridos/metabolismo , Proteínas de Transporte de Membrana/genética , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , beta-Lactamasas/genética , Proteínas de la Membrana Bacteriana Externa/genética , Transporte Biológico/genética , Permeabilidad de la Membrana Celular/genética , Pruebas de Sensibilidad Microbiana/métodos , Mutación/genética , beta-Lactamas/farmacologíaRESUMEN
3-Deoxy-d-manno-oct-2-ulosonic acid (Kdo) is an essential component of LPS in the outer leaflet of the Gram-negative bacterial outer membrane. Although labeling of Escherichia coli with the chemical reporter 8-azido-3,8-dideoxy-d-manno-oct-2-ulosonic acid (Kdo-N3) has been reported, its incorporation into LPS has not been directly shown. We have now verified Kdo-N3 incorporation into E. coli LPS at the molecular level. Using microscopy and PAGE analysis, we show that Kdo-N3 is localized to the outer membrane and specifically incorporates into rough and deep-rough LPS. In an E. coli strain lacking endogenous Kdo biosynthesis, supplementation with exogenous Kdo restored full-length core-LPS, which suggests that the Kdo biosynthetic pathways might not be essential in vivo in the presence of sufficient exogenous Kdo. In contrast, exogenous Kdo-N3 only restored a small fraction of core LPS with the majority incorporated into truncated LPS. The truncated LPS were identified as Kdo-N3-lipid IVA and (Kdo-N3)2-lipid IVA by MS analysis. The low level of Kdo-N3 incorporation could be partly explained by a 6-fold reduction in the specificity constant of the CMP-Kdo synthetase KdsB with Kdo-N3 compared with Kdo. These results indicate that the azido moiety in Kdo-N3 interferes with its utilization and may limit its utility as a tracer of LPS biosynthesis and transport in E. coli We propose that our findings will be helpful for researchers using Kdo and its chemical derivatives for investigating LPS biosynthesis, transport, and assembly in Gram-negative bacteria.
Asunto(s)
Azidas/metabolismo , Escherichia coli/metabolismo , Lipopolisacáridos/metabolismo , Azúcares Ácidos/metabolismo , Electroforesis en Gel de Poliacrilamida , Colorantes Fluorescentes/metabolismo , Espectrometría de Masas , Nucleotidiltransferasas/metabolismo , Especificidad por SustratoRESUMEN
The inherent difficulty of discovering new and effective antibacterials and the rapid development of resistance particularly in Gram-negative bacteria, illustrates the urgent need for new methods that enable rational drug design. Here we report the development of 3D imaging cluster Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) as a label-free approach to chemically map small molecules in aggregated and single Escherichia coli cells, with â¼300 nm spatial resolution and high chemical sensitivity. The feasibility of quantitative analysis was explored, and a nonlinear relationship between treatment dose and signal for tetracycline and ampicillin, two clinically used antibacterials, was observed. The methodology was further validated by the observation of reduction in tetracycline accumulation in an E. coli strain expressing the tetracycline-specific efflux pump (TetA) compared to the isogenic control. This study serves as a proof-of-concept for a new strategy for chemical imaging at the nanoscale and has the potential to aid discovery of new antibacterials.
Asunto(s)
Antibacterianos/análisis , Escherichia coli/química , Análisis de la Célula Individual/métodos , Ampicilina/análisis , Ampicilina/metabolismo , Antibacterianos/metabolismo , Relación Dosis-Respuesta a Droga , Límite de Detección , Espectrometría de Masa de Ion Secundario/métodos , Tetraciclina/análisis , Tetraciclina/metabolismoRESUMEN
UNLABELLED: Lipid A on the Gram-negative outer membrane (OM) is synthesized in the cytoplasm by the Lpx pathway and translocated to the OM by the Lpt pathway. Some Acinetobacter baumannii strains can tolerate the complete loss of lipopolysaccharide (LPS) resulting from the inactivation of early LPS pathway genes such as lpxC. Here, we characterized a mutant deleted for lptD, which encodes an OM protein that mediates the final translocation of fully synthesized LPS to the OM. Cells lacking lptD had a growth defect comparable to that of an lpxC deletion mutant under the growth conditions tested but were more sensitive to hydrophobic antibiotics, revealing a more significant impact on cell permeability from impaired LPS translocation than from the loss of LPS synthesis. Consistent with this, ATP leakage and N-phenyl-1-naphthylamine (NPN) fluorescence assays indicated a more severe impact of lptD deletion than of lpxC deletion on inner and outer membrane permeability, respectively. Targeted liquid chromatography-mass spectrometry (LCMS) analysis of LPS intermediates from UDP-3-O-R-3-hydroxylauroyl-N-acetyl-α-d-glucosamine through lipid IV(A) showed that the loss of LptD caused an accumulation of lipid IV(A). This suggested that pathway intermediate accumulation or mislocalization caused by the blockage of later LPS pathway steps impacts envelope integrity. Supporting this notion, chemical inhibition of lipid A precursor enzymes, including LpxC and FabB/F, in the lptD deletion strain partially rescued growth and permeability defects. IMPORTANCE: New antibiotics to treat Gram-negative bacterial infections are urgently needed. Inhibition of LPS biosynthesis is attractive because this would impact viability and cell permeability. Therefore, a better understanding of this pathway is important, especially in strains such as A. baumannii ATCC 19606, where LPS biosynthesis is not essential in vitro. We show that ATCC 19606 also survives the loss of the final translocation of LPS into the OM (lptD deletion). Intriguingly, this impaired cell envelope integrity more than the loss of LPS biosynthesis (lpxC deletion), presumably due to the accumulation of toxic intermediates. Supporting this, chemical inhibition of LPS biosynthesis partially reversed this permeability defect. This extends our understanding of the LPS machinery and provides insights into potential interrelationships of the target steps along this important pathway.
Asunto(s)
Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Ácidos Grasos/biosíntesis , Eliminación de Gen , Lipopolisacáridos/biosíntesis , Proteínas de la Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Regulación Bacteriana de la Expresión Génica , PermeabilidadRESUMEN
The PhoQ/PhoP two-component system activates many genes for lipopolysaccharide (LPS) modification when cells are grown at low Mg(2+) concentrations. An additional target of PhoQ and PhoP is MgrR, an Hfq-dependent small RNA that negatively regulates expression of eptB, also encoding a protein that carries out LPS modification. Examination of LPS confirmed that MgrR effectively silences EptB; the phosphoethanolamine modification associated with EptB is found in ΔmgrR::kan but not mgrR(+) cells. Sigma E has been reported to positively regulate eptB, although the eptB promoter does not have the expected Sigma E recognition motifs. The effects of Sigma E and deletion of mgrR on levels of eptB mRNA were independent, and the same 5' end was found in both cases. In vitro transcription and the behaviour of transcriptional and translational fusions demonstrate that Sigma E acts directly at the level of transcription initiation for eptB, from the same start point as Sigma 70. The results suggest that when Sigma E is active, synthesis of eptB transcript outstrips MgrR-dependent degradation; presumably the modification of LPS is important under these conditions. Adding to the complexity of eptB regulation is a second sRNA, ArcZ, which also directly and negatively regulates eptB.
Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica , Lipopolisacáridos/metabolismo , ARN Interferente Pequeño/metabolismo , Transcripción Genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Eliminación de Gen , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , ARN Interferente Pequeño/genética , Factor sigma/genética , Factor sigma/metabolismoRESUMEN
The ß-acetoacetyl-acyl carrier protein synthase FabY is a key enzyme in the initiation of fatty acid biosynthesis in Pseudomonas aeruginosa. Deletion of fabY results in an increased susceptibility of P. aeruginosa in vitro to a number of antibiotics, including vancomycin and cephalosporins. Because antibiotic susceptibility can be influenced by changes in membrane lipid composition, we determined the total fatty acid profile of the ΔfabY mutant, which suggested alterations in the lipid A region of the lipopolysaccharide. The majority of lipid A species in the ΔfabY mutant lacked a single secondary lauroyl group, resulting in hypoacylated lipid A. Adding exogenous fatty acids to the growth media restored the wild-type antibiotic susceptibility profile and the wild-type lipid A fatty acid profile. We suggest that incorporation of hypoacylated lipid A species into the outer membrane contributes to the shift in the antibiotic susceptibility profile of the ΔfabY mutant.
Asunto(s)
Aciltransferasas/metabolismo , Antiinfecciosos/farmacología , Proteínas Bacterianas/metabolismo , Lipopolisacáridos/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Aciltransferasas/genética , Proteínas Bacterianas/genética , Pseudomonas aeruginosa/genéticaRESUMEN
Taniborbactam (formerly VNRX-5133) is a novel, investigational boronic acid ß-lactamase inhibitor. The combination of cefepime (FEP) with taniborbactam is active against Enterobacterales carrying class A, B, C, and/or D enzymes. We assessed the activity of FEP-taniborbactam against Enterobacterales clinical strains carrying blaOXA-48 (N = 50, 100%), of which 78% harbored at least one extended-spectrum ß-lactamase (ESBL). CLSI-based agar dilution susceptibility testing was conducted using FEP-taniborbactam and comparators FEP, meropenem-vaborbactam (MVB), and ceftazidime-avibactam (CZA). The addition of taniborbactam lowered FEP MICs to the provisionally susceptible range of ≤16 µg/mL; the MIC90 value decreased from ≥64 µg/mL for FEP to 4 µg/mL for FEP-taniborbactam. Notably, FEP-taniborbactam MIC50/MIC90 values (0.5/4 µg/mL) were lower than those for MVB (1/16 µg/mL) and comparable to those for CZA (0.5/1 µg/mL). Time-kill assays with E. coli clinical strains DOV (blaOXA-48, blaCTX-M-15, blaTEM-1, and blaOXA-1) and MLI (blaOXA-48, blaVEB, blaTEM-1, and blaCMY-2) revealed that FEP-taniborbactam at concentrations 1×, 2×, and 4× MIC displayed time-dependent reductions in the number of CFU/mL from 0 to 6 h, and at 4× MIC demonstrated bactericidal activity (3 log10 reduction in CFU/mL at 24 h). Therefore, taniborbactam in combination with FEP was highly active against this diverse panel of Enterobacterales with blaOXA-48 and represents a potential addition to our antibiotic arsenal.IMPORTANCEOXA-48-like ß-lactamases are class D carbapenemases widespread in Klebsiella pneumoniae and other Enterobacterales and are associated with carbapenem treatment failures. As up to 80% of OXA-48-like positive isolates coproduce extended-spectrum ß-lactamases, a combination of ß-lactams with broad-spectrum ß-lactamase inhibitors is required to counteract all OXA-48-producing strains effectively. Herein, we evaluated the activity of cefepime-taniborbactam against 50 clinical strains producing OXA-48. We report that adding taniborbactam shifted the minimum inhibitory concentration (MIC) toward cefepime's susceptible range, restoring its antimicrobial activity. Notably, cefepime-taniborbactam MIC50/MIC90 values (0.5/4 µg/mL) were comparable to ceftazidime-avibactam (0.5/1 µg/mL). Finally, time-kill assays revealed sustained bactericidal activity of cefepime-taniborbactam for up to 24 h. In conclusion, cefepime-taniborbactam will be a welcome addition to the antibiotic arsenal to combat Enterobacterales producing OXA-48.
RESUMEN
We previously described enrichment of conditional Escherichia coli msbA mutants defective in lipopolysaccharide export using Ludox density gradients (Doerrler WT (2007) Appl Environ Microbiol 73; 7992-7996). Here, we use this approach to isolate and characterize temperature-sensitive lpxL mutants. LpxL is a late acyltransferase of the pathway of lipid A biosynthesis (The Raetz Pathway). Sequencing the lpxL gene from the mutants revealed the presence of both missense and nonsense mutations. The missense mutations include several in close proximity to the enzyme's active site or conserved residues (E137K, H132Y, G168D). These data demonstrate that Ludox gradients can be used to efficiently isolate conditional E. coli mutants with defects in lipopolysaccharide biosynthesis and provide insight into the enzymatic mechanism of LpxL.
Asunto(s)
Aciltransferasas/genética , Codón sin Sentido , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Mutación Missense , Aciltransferasas/química , Aciltransferasas/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Centrifugación por Gradiente de Densidad , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Prueba de Complementación Genética , Ingeniería Genética , Lípido A/biosíntesis , Datos de Secuencia Molecular , Dióxido de SilicioRESUMEN
Synthesis of Escherichia coli LpxL, which transfers a secondary laurate chain to the 2' position of lipid A, in Yersinia pestis produced bisphosphoryl hexa-acylated lipid A at 37°C, leading to significant attenuation of virulence. Our previous observations also indicated that strain χ10015(pCD1Ap) (ΔlpxP32::P(lpxL) lpxL) stimulated a strong inflammatory reaction but sickened mice before recovery and retained virulence via intranasal (i.n.) infection. The development of live, attenuated Y. pestis vaccines may be facilitated by detoxification of its lipopolysaccharide (LPS). Heterologous expression of the lipid A 1-phosphatase, LpxE, from Francisella tularensis in Y. pestis yields predominantly 1-dephosphorylated lipid A, as confirmed by mass spectrometry. Results indicated that expression of LpxE on top of LpxL provided no significant reduction in virulence of Y. pestis in mice when it was administered i.n. but actually reduced the 50% lethal dose (LD(50)) by 3 orders of magnitude when the strain was administered subcutaneously (s.c.). Additionally, LpxE synthesis in wild-type Y. pestis KIM6+(pCD1Ap) led to slight attenuation by s.c. inoculation but no virulence change by i.n. inoculation in mice. In contrast to Salmonella enterica, expression of LpxE does not attenuate the virulence of Y. pestis.
Asunto(s)
Lípido A/metabolismo , Factores de Virulencia/metabolismo , Yersinia pestis/metabolismo , Yersinia pestis/patogenicidad , Aciltransferasas/genética , Aciltransferasas/metabolismo , Animales , Modelos Animales de Enfermedad , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Dosificación Letal Mediana , Lípido A/química , Espectrometría de Masas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Peste/microbiología , Peste/mortalidad , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análisis de Supervivencia , Virulencia , Factores de Virulencia/química , Yersinia pestis/genéticaRESUMEN
The development of safe live, attenuated Salmonella vaccines may be facilitated by detoxification of its LPS. Recent characterization of the lipid A 1-phosphatase, LpxE, from Francisella tularensis allowed us to construct recombinant, plasmid-free strains of Salmonella that produce predominantly 1-dephosphorylated lipid A, similar to the adjuvant approved for human use. Complete lipid A 1-dephosphorylation was also confirmed under low pH, low Mg(2+) culture conditions, which induce lipid A modifications. LpxE expression in Salmonella reduced its virulence in mice by five orders of magnitude. Moreover, mice inoculated with these detoxified strains were protected against wild-type challenge. Candidate Salmonella vaccine strains synthesizing pneumococcal surface protein A (PspA) were also confirmed to possess nearly complete lipid A 1-dephosphorylation. After inoculation by the LpxE/PspA strains, mice produced robust levels of anti-PspA Abs and showed significantly improved survival against challenge with wild-type Streptococcus pneumoniae WU2 compared with vector-only-immunized mice, validating Salmonella synthesizing 1-dephosphorylated lipid A as an Ag-delivery system.
Asunto(s)
Adyuvantes Inmunológicos/biosíntesis , Endotoxinas/farmacología , Lípido A/análogos & derivados , Lipopolisacáridos/biosíntesis , Proteínas de la Membrana/genética , Monoéster Fosfórico Hidrolasas/genética , Salmonella typhimurium/inmunología , Salmonella typhimurium/metabolismo , Adyuvantes Inmunológicos/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Endotoxinas/inmunología , Femenino , Humanos , Lípido A/biosíntesis , Lípido A/genética , Lípido A/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación/inmunología , Conejos , Vacunas contra la Salmonella/genética , Vacunas contra la Salmonella/inmunología , Vacunas contra la Salmonella/metabolismo , Salmonella enterica/genética , Salmonella enterica/inmunología , Salmonella enterica/metabolismo , Salmonella typhimurium/genética , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/inmunología , Streptococcus pneumoniae/metabolismo , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunologíaRESUMEN
Lipid A is a key component of the outer membrane of Gram-negative bacteria and stimulates proinflammatory responses via the Toll-like receptor 4 (TLR4)-MD2-CD14 pathway. Its endotoxic activity depends on the number and length of acyl chains and its phosphorylation state. In Salmonella enterica serovar Typhimurium, removal of the secondary laurate or myristate chain in lipid A results in bacterial attenuation and growth defects in vitro. However, the roles of the two lipid A phosphate groups in bacterial virulence and immunogenicity remain unknown. Here, we used an S. Typhimurium msbB pagL pagP lpxR mutant, carrying penta-acylated lipid A, as the parent strain to construct a series of mutants synthesizing 1-dephosphorylated, 4'-dephosphorylated, or nonphosphorylated penta-acylated lipid A. Dephosphorylated mutants exhibited increased sensitivity to deoxycholate and showed increased resistance to polymyxin B. Removal of both phosphate groups severely attenuated the mutants when administered orally to BALB/c mice, but the mutants colonized the lymphatic tissues and were sufficiently immunogenic to protect the host from challenge with wild-type S. Typhimurium. Mice receiving S. Typhimurium with 1-dephosphorylated or nonphosphorylated penta-acylated lipid A exhibited reduced levels of cytokines. Attenuated and dephosphorylated Salmonella vaccines were able to induce adaptive immunity against heterologous (PspA of Streptococcus pneumoniae) and homologous antigens (lipopolysaccharide [LPS] and outer membrane proteins [OMPs]).