Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Circulation ; 144(6): 455-470, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34111946

RESUMEN

BACKGROUND: Coronary allograft vasculopathy (CAV) is a devastating sequela of heart transplant in which arterial intimal thickening limits coronary blood flow. There are currently no targeted therapies to prevent or reduce this pathology that leads to transplant failure. Vascular smooth muscle cell (VSMC) phenotypic plasticity is critical in CAV neointima formation. TET2 (TET methylcytosine dioxygenase 2) is an important epigenetic regulator of VSMC phenotype, but the role of TET2 in the progression of CAV is unknown. METHODS: We assessed TET2 expression and activity in human CAV and renal transplant samples. We also used the sex-mismatched murine aortic graft model of graft arteriopathy (GA) in wild-type and inducible smooth muscle-specific Tet2 knockout mice; and in vitro studies in murine and human VSMCs using knockdown, overexpression, and transcriptomic approaches to assess the role of TET2 in VSMC responses to IFNγ (interferon γ), a cytokine elaborated by T cells that drives CAV progression. RESULTS: In the present study, we found that TET2 expression and activity are negatively regulated in human CAV and renal transplant samples and in the murine aortic graft model of GA. IFNγ was sufficient to repress TET2 and induce an activated VSMC phenotype in vitro. TET2 depletion mimicked the effects of IFNγ, and TET2 overexpression rescued IFNγ-induced dedifferentiation. VSMC-specific TET2 depletion in aortic grafts, and in the femoral wire restenosis model, resulted in increased VSMC apoptosis and medial thinning. In GA, this apoptosis was tightly correlated with proliferation. In vitro, TET2-deficient VSMCs undergo apoptosis more readily in response to IFNγ and expressed a signature of increased susceptibility to extrinsic apoptotic signaling. Enhancing TET2 enzymatic activity with high-dose ascorbic acid rescued the effect of GA-induced VSMC apoptosis and intimal thickening in a TET2-dependent manner. CONCLUSIONS: TET2 is repressed in CAV and GA, likely mediated by IFNγ. TET2 serves to protect VSMCs from apoptosis in the context of transplant vasculopathy or IFNγ stimulation. Promoting TET2 activity in vivo with systemic ascorbic acid reduces VSMC apoptosis and intimal thickening. These data suggest that promoting TET2 activity in CAV may be an effective strategy for limiting CAV progression.


Asunto(s)
Apoptosis/genética , Proteínas de Unión al ADN/genética , Dioxigenasas/genética , Miocitos del Músculo Liso/metabolismo , Túnica Íntima/metabolismo , Túnica Íntima/patología , Enfermedades Vasculares/etiología , Enfermedades Vasculares/metabolismo , Aloinjertos , Animales , Biomarcadores , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Trasplante de Corazón/efectos adversos , Humanos , Inmunohistoquímica , Interferón gamma/metabolismo , Ratones , Ratones Noqueados , Factor de Transcripción STAT1 , Transducción de Señal , Enfermedades Vasculares/patología
2.
Circulation ; 139(5): 679-693, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30586711

RESUMEN

BACKGROUND: Vascular smooth muscle cells (SMCs) synthesize extracellular matrix (ECM) that contributes to tissue remodeling after revascularization interventions. The cytokine transforming growth factor ß (TGF-ß) is induced on tissue injury and regulates tissue remodeling and wound healing, but dysregulated signaling results in excess ECM deposition and fibrosis. The LIM (Lin11, Isl-1 & Mec-3) domain protein LIM domain only 7 (LMO7) is a TGF-ß1 target gene in hepatoma cells, but its role in vascular physiology and fibrosis is unknown. METHODS: We use carotid ligation and femoral artery denudation models in mice with global or inducible smooth muscle-specific deletion of LMO7, and knockout, knockdown, overexpression, and mutagenesis approaches in mouse and human SMC, and human arteriovenous fistula and cardiac allograft vasculopathy samples to assess the role of LMO7 in neointima and fibrosis. RESULTS: We demonstrate that LMO7 is induced postinjury and by TGF-ß in SMC in vitro. Global or SMC-specific LMO7 deletion enhanced neointimal formation, TGF-ß signaling, ECM deposition, and proliferation in vascular injury models. LMO7 loss of function in human and mouse SMC enhanced ECM protein expression at baseline and after TGF-ß treatment. TGF-ß neutralization or receptor antagonism prevented the exacerbated neointimal formation and ECM synthesis conferred by loss of LMO7. Notably, loss of LMO7 coordinately amplified TGF-ß signaling by inducing expression of Tgfb1 mRNA, TGF-ß protein, αv and ß3 integrins that promote activation of latent TGF-ß, and downstream effectors SMAD3 phosphorylation and connective tissue growth factor. Mechanistically, the LMO7 LIM domain interacts with activator protein 1 transcription factor subunits c-FOS and c-JUN and promotes their ubiquitination and degradation, disrupting activator protein 1-dependent TGF-ß autoinduction. Importantly, preliminary studies suggest that LMO7 is upregulated in human intimal hyperplastic arteriovenous fistula and cardiac allograft vasculopathy samples, and inversely correlates with SMAD3 phosphorylation in cardiac allograft vasculopathy. CONCLUSIONS: LMO7 is induced by TGF-ß and serves to limit vascular fibrotic responses through negative feedback regulation of the TGF-ß pathway. This mechanism has important implications for intimal hyperplasia, wound healing, and fibrotic diseases.


Asunto(s)
Proteínas con Dominio LIM/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Remodelación Vascular , Lesiones del Sistema Vascular/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Retroalimentación Fisiológica , Fibrosis , Hiperplasia , Integrina alfaVbeta3/metabolismo , Proteínas con Dominio LIM/deficiencia , Proteínas con Dominio LIM/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/lesiones , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Neointima , Transducción de Señal , Factor de Transcripción AP-1/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta1/genética , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA