Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Cancer ; 24(1): 555, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702616

RESUMEN

Periampullary cancers, including pancreatic ductal adenocarcinoma, ampullary-, cholangio-, and duodenal carcinoma, are frequently diagnosed in an advanced stage and are associated with poor overall survival. They are difficult to differentiate from each other and challenging to distinguish from benign periampullary disease preoperatively. To improve the preoperative diagnostics of periampullary neoplasms, clinical or biological markers are warranted.In this study, 28 blood plasma amino acids and derivatives from preoperative patients with benign (N = 45) and malignant (N = 72) periampullary disease were analyzed by LC-MS/MS.Principal component analysis and consensus clustering both separated the patients with cancer and the patients with benign disease. Glutamic acid had significantly higher plasma expression and 15 other metabolites significantly lower plasma expression in patients with malignant disease compared with patients having benign disease. Phenylalanine was the only metabolite associated with improved overall survival (HR = 0.50, CI 0.30-0.83, P < 0.01).Taken together, plasma metabolite profiles from patients with malignant and benign periampullary disease were significantly different and have the potential to distinguish malignant from benign disease preoperatively.


Asunto(s)
Aminoácidos , Biomarcadores de Tumor , Humanos , Masculino , Femenino , Aminoácidos/sangre , Persona de Mediana Edad , Anciano , Biomarcadores de Tumor/sangre , Ampolla Hepatopancreática/patología , Espectrometría de Masas en Tándem , Diagnóstico Diferencial , Neoplasias del Conducto Colédoco/sangre , Neoplasias del Conducto Colédoco/diagnóstico , Neoplasias del Conducto Colédoco/cirugía , Neoplasias del Conducto Colédoco/patología , Neoplasias Duodenales/sangre , Neoplasias Duodenales/diagnóstico , Neoplasias Duodenales/patología , Neoplasias Duodenales/cirugía , Adulto , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/cirugía , Neoplasias Pancreáticas/mortalidad , Cromatografía Liquida , Análisis de Componente Principal , Carcinoma Ductal Pancreático/sangre , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/patología
2.
Am J Hum Genet ; 107(5): 977-988, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33058759

RESUMEN

PRKACA and PRKACB code for two catalytic subunits (Cα and Cß) of cAMP-dependent protein kinase (PKA), a pleiotropic holoenzyme that regulates numerous fundamental biological processes such as metabolism, development, memory, and immune response. We report seven unrelated individuals presenting with a multiple congenital malformation syndrome in whom we identified heterozygous germline or mosaic missense variants in PRKACA or PRKACB. Three affected individuals were found with the same PRKACA variant, and the other four had different PRKACB mutations. In most cases, the mutations arose de novo, and two individuals had offspring with the same condition. Nearly all affected individuals and their affected offspring shared an atrioventricular septal defect or a common atrium along with postaxial polydactyly. Additional features included skeletal abnormalities and ectodermal defects of variable severity in five individuals, cognitive deficit in two individuals, and various unusual tumors in one individual. We investigated the structural and functional consequences of the variants identified in PRKACA and PRKACB through the use of several computational and experimental approaches, and we found that they lead to PKA holoenzymes which are more sensitive to activation by cAMP than are the wild-type proteins. Furthermore, expression of PRKACA or PRKACB variants detected in the affected individuals inhibited hedgehog signaling in NIH 3T3 fibroblasts, thereby providing an underlying mechanism for the developmental defects observed in these cases. Our findings highlight the importance of both Cα and Cß subunits of PKA during human development.


Asunto(s)
Anomalías Múltiples/genética , Disfunción Cognitiva/genética , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Dedos/anomalías , Mutación de Línea Germinal , Defectos de los Tabiques Cardíacos/genética , Polidactilia/genética , Dedos del Pie/anomalías , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/patología , Adolescente , Adulto , Animales , Secuencia de Bases , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/patología , AMP Cíclico/metabolismo , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/química , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/deficiencia , Femenino , Dedos/patología , Regulación del Desarrollo de la Expresión Génica , Defectos de los Tabiques Cardíacos/diagnóstico , Defectos de los Tabiques Cardíacos/patología , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Holoenzimas/química , Holoenzimas/deficiencia , Holoenzimas/genética , Humanos , Recién Nacido , Masculino , Ratones , Modelos Moleculares , Mosaicismo , Células 3T3 NIH , Linaje , Polidactilia/diagnóstico , Polidactilia/patología , Estructura Secundaria de Proteína , Dedos del Pie/patología
3.
HPB (Oxford) ; 25(11): 1382-1392, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37544854

RESUMEN

BACKGROUND: The aim of this study was to explore the associations between BMI and cancer of the liver, bile ducts, and gallbladder. METHODS: A registry-based cohort study was performed by linking data from several national registries in Norway. RESULTS: The cohort comprised 1 723 692 individuals including 4768 hepatobiliary cancer cases during 55 743 509 person-years of follow-up. In men, we found increased risk of cancer per 5 kg/m2 BMI increase for hepatocellular carcinoma and extrahepatic cholangiocarcinoma. In women there was increased risk of extrahepatic cholangiocarcinoma and gallbladder cancer. Women with high BMI in early adulthood had increased risk of intrahepatic cholangiocarcinoma. Reduced cancer-specific survival was found for all hepatobiliary malignancies in women with overweight and obesity. In men, reduced survival was observed in individuals with obesity for all hepatobiliary cancers, except gallbladder cancer. Increased risk of cancer-death per 5 kg/m2 BMI increase was found for hepatocellular carcinoma, intra-, and extrahepatic cholangiocarcinoma in women. For men, 5 kg/m2 BMI increase was positively associated with cancer-death from intrahepatic cholangiocarcinoma. DISCUSSION: This study supports the notion of an increased risk of hepatobiliary cancers with increasing BMI, with sex and age variations. The findings also suggest a higher risk of cancer-death with increasing BMI.

4.
Mol Pharmacol ; 101(4): 219-225, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34330820

RESUMEN

Protein kinase A (PKA) is a holoenzyme consisting of a regulatory (R)-subunit dimer and two catalytic (C)-subunits. There are two major families of C-subunits, Cα and Cß, and four functionally nonredundant R-subunits (RIα, RIß, RIIα, RIIß). In addition to binding to and being regulated by the R-subunits, the C-subunits are regulated by two tail regions that each wrap around the N- and C-lobes of the kinase core. Although the C-terminal (Ct-) tail is classified as an intrinsically disordered region (IDR), the N-terminal (Nt-) tail is dominated by a strong helix that is flanked by short IDRs. In contrast to the Ct-tail, which is a conserved and highly regulated feature of all PKA, PKG, and protein kinase C protein kinase group (AGC) kinases, the Nt-tail has evolved more recently and is highly variable in vertebrates. Surprisingly and in contrast to the kinase core and the Ct-tail, the entire Nt-tail is not conserved in nonmammalian PKAs. In particular, in humans, Cß actually represents a large family of C-subunits that are highly variable in their Nt-tail and also expressed in a highly tissue-specific manner. Although we know so much about the Cα1-subunit, we know almost nothing about these Cß isoforms wherein Cß2 is highly expressed in lymphocytes, and Cß3 and Cß4 isoforms account for ∼50% of PKA signaling in brain. Based on recent disease mutations, the Cß proteins appear to be functionally important and nonredundant with the Cα isoforms. Imaging in retina also supports nonredundant roles for Cß as well as isoform-specific localization to mitochondria. This represents a new frontier in PKA signaling. SIGNIFICANCE STATEMENT: How tails and adjacent domains regulate each protein kinase is a fundamental challenge for the biological community. Here we highlight how the N- and C-terminal tails of PKA (Nt-tails/Ct-tails) affect the structure and regulate the function of the kinase core and show the combinatorial variations that are introduced into the Nt-tail of the Cα- and Cß-subunits in contrast to the Ct-tail, which is conserved across the entire AGC subfamily of protein kinases.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Proteínas Quinasas , Animales , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Isoformas de Proteínas/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal
5.
BMC Pediatr ; 21(1): 19, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33407269

RESUMEN

BACKGROUND: Current nutritional management of infants born very preterm results in significant deficiency of the essential fatty acids (FAs) arachidonic acid (ARA) and docosahexaenoic acid (DHA). The impact of this deficit on brain maturation and inflammation mediated neonatal morbidities are unknown. The aim of this study is to determine whether early supply of ARA and DHA improves brain maturation and neonatal outcomes in infants born before 29 weeks of gestation. METHODS: Infants born at Oslo University Hospital are eligible to participate in this double-blind randomized controlled trial. Study participants are randomized to receive an enteral FA supplement of either 0.4 ml/kg MCT-oil™ (medium chain triglycerides) or 0.4 ml/kg Formulaid™ (100 mg/kg of ARA and 50 mg/kg of DHA). The FA supplement is given from the second day of life to 36 weeks' postmenstrual age (PMA). The primary outcome is brain maturation assessed by Magnetic Resonance Imaging (MRI) at term equivalent age. Secondary outcomes include quality of growth, incidence of neonatal morbidities, cardiovascular health and neuro-development. Target sample size is 120 infants (60 per group), this will provide 80% power to detect a 0.04 difference in mean diffusivity (MD, mm2/sec) in major white matter tracts on MRI. DISCUSSION: Supplementation of ARA and DHA has the potential to improve brain maturation and reduce inflammation related diseases. This study is expected to provide valuable information for future nutritional guidelines for preterm infants. TRIAL REGISTRATION: Clinicaltrials.gov ID: NCT03555019 . Registered 4 October 2018- Retrospectively registered.


Asunto(s)
Recien Nacido Prematuro , Terapia Nutricional , Ácido Araquidónico , Ácidos Docosahexaenoicos , Método Doble Ciego , Humanos , Lactante , Recién Nacido , Inflamación , Ensayos Clínicos Controlados Aleatorios como Asunto
8.
Front Nutr ; 11: 1345922, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38450230

RESUMEN

Introduction: Carbohydrates and fats are the primary energy substrates during exercise, but proteins can also contribute. When proteins are degraded in the body, the amino groups are mainly converted to urea and excreted. Therefore, nitrogen excretion has been used as a marker of protein degradation, but a clear conclusion has yet to be reached on the effect of exercise on nitrogen excretion. Thus, we tested whether exercise increases nitrogen excretion. Methods: Fifteen young, healthy, moderate-to-well-trained participants (4 females, 11 males, VO2max 54.4 ± 1.7 mL·kg-1·min-1; mean ± SEM) participated in a randomized, balanced cross-over design investigation consisting of 1 day with 5 h of exercise (exercise day, EX) and 1 day with no exercise (control day, CON). The participants recorded their dietary intake the day before from 16:00 and throughout the intervention day. They then repeated these dietary intakes on the second trial day. A standardized lunch was provided on both days. In addition, participants were allowed to consume almost protein-free snacks in EX to ensure the same energy balance during both trial days. Urine was collected throughout the whole testing period, and urinary 3-methylhistidine (3-MH) excretion was measured to examine muscular catabolism. The sweat rate was calculated during the exercise period. Results and discussion: The urinary nitrogen and 3-MH excretions did not differ significantly between EX and CON (p = 0.764 and p = 0.953). The sweat rate was 2.55 ± 0.25 L in EX and 0.14 ± 0.15 L in CON (p < 0.001), and by estimating sweat nitrogen excretion, total nitrogen excretion was shown to differ with exercise. Our results showed that 5 hours of mixed exercise did not significantly impact urinary nitrogen and 3-MH excretions in healthy moderate-to-well-trained young adults.

9.
Immunol Lett ; 268: 106884, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908524

RESUMEN

Ablation of the immune-specific catalytic subunit Cß2 of protein kinase A is associated with a proinflammatory phenotype and increased sensitivity to autoimmunity in mice. Here we show that tumour growth of the adenocarcinoma cell line EO771 in the breast and in the lung after injection into the mammary fat pad and tail vein, respectively, was significantly reduced in mice ablated for Cß2 compared to wild-type mice. In both cases, the breast and lung tumours showed increased infiltration of immune cells in the mice lacking Cß2 compared to wild-type mice. Despite this, it appeared that solid tissue- versus intravenously injected EO771 cells evoked different immune responses. This was reflected by significantly increased levels of splenic proinflammatory immune cells and circulating cytokines in Cß2 ablated mice carrying breast- but not the lung tumours. Moreover, Cß2 ablated mice injected with EO771 cells showed increased overall survival compared to wild-type mice. Taken together, our results suggest for a role for immune cell-specific Cß2 in protecting against tumour growth induced by EO771 cells in mice that is reflected in improved overall survival.

10.
Med Sci Sports Exerc ; 55(12): 2228-2240, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37535337

RESUMEN

INTRODUCTION: Exercise with low carbohydrate availability increases protein degradation, which may reduce subsequent performance considerably. The present study aimed to investigate the effect of carbohydrate ingestion during standardized exercise with and without exhaustion on protein degradation and next-day performance. METHODS: Seven trained male cyclists (V̇O 2max 66.8 ± 1.9 mL·kg -1 ·min -1 ; mean ± SEM) cycled to exhaustion (~2.5 h) at a power output eliciting 68% of V̇O 2max (W 68% ). This was followed by repeating 1-min work/1-min recovery intervals at 90% of V̇O 2max (W 90% ) until exhaustion. During W 68% , cyclists consumed a placebo water drink (PLA) the first time and a carbohydrate drink (CHO), 1 g carbohydrate·kg -1 ·h -1 , the second time. The participants performed the same amount of work under the two conditions, separated by at least 1 wk. A standardized diet was provided to the participants so that the two conditions were isoenergetic. To test the impact of carbohydrates on recovery, participants completed a time trial (TT) the next day. RESULTS: Carbohydrate ingestion maintained carbohydrate availability during W 68% and W 90% : total carbohydrate oxidation was significantly higher in CHO ( P = 0.022), and plasma glucose concentration was maintained compared with PLA ( P = 0.025). Next-day performance during TT was better after CHO ingestion (CHO, 41:49 ± 1:38 min; PLA, 42:50 ± 1:46 min; P = 0.020; effect size d = 0.23, small), as was gross efficiency (CHO, 18.6% ± 0.3%; PLA, 17.9% ± 0.3%; P = 0.019). Urinary nitrogen excretion ( P = 0.897) and urinary 3-methylhistidine excretion ( P = 0.673) did not significantly differ during the study period. Finally, tyrosine and phenylalanine plasma concentrations increased in PLA but not in CHO ( P = 0.018). CONCLUSIONS: Carbohydrate ingestion during exhaustive exercise reduced deterioration in next-day performance through reduced metabolic stress and development of fatigue. In addition, some parameters point toward less protein degradation, which would preserve muscle function.


Asunto(s)
Aminoácidos , Ejercicio Físico , Humanos , Masculino , Ejercicio Físico/fisiología , Carbohidratos de la Dieta , Ingestión de Alimentos , Poliésteres/farmacología , Resistencia Física/fisiología , Glucemia/metabolismo , Ciclismo/fisiología
11.
Nat Commun ; 14(1): 3109, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37253747

RESUMEN

Antibody-based blocking of vascular endothelial growth factor (VEGF) reduces choroidal neovascularization (CNV) and retinal edema, rescuing vision in patients with neovascular age-related macular degeneration (nAMD). However, poor response and resistance to anti-VEGF treatment occurs. We report that targeting the Notch ligand Jagged1 by a monoclonal antibody reduces neovascular lesion size, number of activated phagocytes and inflammatory markers and vascular leakage in an experimental CNV mouse model. Additionally, we demonstrate that Jagged1 is expressed in mouse and human eyes, and that Jagged1 expression is independent of VEGF signaling in human endothelial cells. When anti-Jagged1 was combined with anti-VEGF in mice, the decrease in lesion size exceeded that of either antibody alone. The therapeutic effect was solely dependent on blocking, as engineering antibodies to abolish effector functions did not impair the therapeutic effect. Targeting of Jagged1 alone or in combination with anti-VEGF may thus be an attractive strategy to attenuate CNV-bearing diseases.


Asunto(s)
Neovascularización Coroidal , Factor A de Crecimiento Endotelial Vascular , Humanos , Ratones , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/metabolismo , Neovascularización Coroidal/patología , Anticuerpos Bloqueadores/uso terapéutico , Transducción de Señal/fisiología , Modelos Animales de Enfermedad , Inhibidores de la Angiogénesis/uso terapéutico
12.
Front Immunol ; 13: 840610, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359994

RESUMEN

T lymphocytes (T cells) are divided into two functionally different subgroups the CD4+ T helper cells (Th) and the CD8+ cytotoxic T lymphocytes (CTL). Adequate CD4 and CD8 T cell activation to proliferation, clonal expansion and effector function is crucial for efficient clearance of infection by pathogens. Failure to do so may lead to T cell exhaustion. Upon activation by antigen presenting cells, T cells undergo metabolic reprograming that support effector functions. In this review we will discuss how metabolic reprograming dictates functionality during viral infections using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human immunodeficiency virus (HIV) as examples. Moreover, we will briefly discuss T cell metabolic programs during bacterial infections exemplified by Mycobacterium tuberculosis (MT) infection.


Asunto(s)
Linfocitos T CD4-Positivos , COVID-19 , Linfocitos T CD8-positivos , Humanos , SARS-CoV-2 , Linfocitos T Citotóxicos
13.
FEBS Open Bio ; 12(1): 163-174, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34698439

RESUMEN

In humans, there are two forms of glutaminase (GLS), designated GLS1 and GLS2. These enzymes catalyse the conversion of glutamine to glutamate. GLS1 exists as two isozymes: kidney glutaminase (KGA) and glutaminase C (GAC). Several GLS inhibitors have been identified, of which DON (6-diazo-5-oxonorleucine), BPTES (bis-2-(5-phenylacetamido-1, 3, 4-thiadiazol-2-yl) ethyl sulphide), 968 (5-(3-Bromo-4-(dimethylamino)phenyl)-2,2-dimethyl-2,3,5,6-tetrahydrobenzo[a]phenanthridin-4(1H)-one) and CB839 (Telaglenastat) are the most widely used. However, these inhibitors have variable efficacy, specificity and bioavailability in research and clinical settings, implying the need for novel and improved GLS inhibitors. Based on this need, a diverse library of 28,000 compounds from Enamine was screened for inhibition of recombinant, purified GAC. From this library, one inhibitor designated compound 19 (C19) was identified with kinetic features revealing allosteric inhibition of GAC in the µm range. Moreover, C19 inhibits anti-CD3/CD28-induced CD4+ T-cell proliferation and cytokine production with similar or greater potency as compared to BPTES. Taken together, our data suggest that C19 has the potential to modulate GLS1 activity and alter metabolic activity of T cells.


Asunto(s)
Glutaminasa , Tiadiazoles , Proliferación Celular , Inhibidores Enzimáticos/farmacología , Glutaminasa/metabolismo , Glutamina/metabolismo , Humanos , Tiadiazoles/metabolismo , Tiadiazoles/farmacología
14.
Front Pharmacol ; 13: 1075603, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467057

RESUMEN

Methotrexate is one of the cornerstones of rheumatoid arthritis (RA) therapy. Genetic factors or single nucleotide polymorphisms (SNPs) are responsible for 15%-30% of the variation in drug response. Identification of clinically effective SNP biomarkers for predicting methotrexate (MTX) sensitivity has been a challenge. The aim of this study was to explore the association between the disease related outcome of MTX treatment and 23 SNPs in 8 genes of the MTX pathway, as well as one pro-inflammatory related gene in RA patients naïve to MTX. Categorical outcomes such as Disease Activity Score (DAS)-based European Alliance of Associations for Rheumatology (EULAR) non-response at 4 months, The American College of Rheumatology and EULAR (ACR/EULAR) non-remission at 6 months, and failure to sustain MTX monotherapy from 12 to 24 months were assessed, together with continuous outcomes of disease activity, joint pain and fatigue. We found that the SNPs rs1801394 in the MTRR gene, rs408626 in DHFR gene, and rs2259571 in AIF-1 gene were significantly associated with disease activity relevant continuous outcomes. Additionally, SNP rs1801133 in the MTHFR gene was identified to be associated with improved fatigue. Moreover, associations with p values at uncorrected significance level were found in SNPs and different categorical outcomes: 1) rs1476413 in the MTHFR gene and rs3784864 in ABCC1 gene are associated with ACR/EULAR non-remission; 2) rs1801133 in the MTHFR gene is associated with EULAR response; 3) rs246240 in the ABCC1 gene, rs2259571 in the AIF-1 gene, rs2274808 in the SLC19A1 gene and rs1476413 in the MTHFR gene are associated with failure to MTX monotherapy after 12-24 months. The results suggest that SNPs in genes associated with MTX activity may be used to predict MTX relevant-clinical outcomes in patients with RA.

15.
FEBS Open Bio ; 11(6): 1719-1730, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33979025

RESUMEN

Endothelial cell function and metabolism are closely linked to differential use of energy substrate sources and combustion. While endothelial cell migration is promoted by 2-phosphofructokinase-6/fructose-2,6-bisphosphatase (PFKFB3)-driven glycolysis, proliferation also depends on fatty acid oxidation for dNTP synthesis. We show that inflammatory activation of human umbilical vein endothelial cells (HUVECs) by interleukin-1ß (IL-1ß), despite inhibiting proliferation, promotes a shift toward more metabolically active phenotype. This was reflected in increased cellular glucose uptake and consumption, which was preceded by an increase in PFKFB3 mRNA and protein expression. However, despite a modest increase in extracellular acidification rates, the increase in glycolysis did not correlate with extracellular lactate accumulation. Accordingly, IL-1ß stimulation also increased oxygen consumption rate, but without a concomitant rise in fatty acid oxidation. Together, this suggests that the IL-1ß-stimulated energy shift is driven by shunting of glucose-derived pyruvate into mitochondria to maintain elevated oxygen consumption in HUVECs. We also revealed a marked donor-dependent variation in the amplitude of the metabolic response to IL-1ß and postulate that the donor-specific response should be taken into account when considering targeting dysregulated endothelial cell metabolism.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , Inflamación/metabolismo , Apoptosis , Proliferación Celular , Células Cultivadas , Glucólisis , Humanos , Interleucina-1beta/metabolismo , Consumo de Oxígeno
16.
Front Immunol ; 12: 689057, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34408746

RESUMEN

Delayed-type hypersensitivity arthritis (DTHA) is a recently established experimental model of rheumatoid arthritis (RA) in mice with pharmacological values. Despite an indispensable role of CD4+ T cells in inducing DTHA, a potential role for CD4+ T cell subsets is lacking. Here we have quantified CD4+ subsets during DTHA development and found that levels of activated, pro-inflammatory Th1, Th17, and memory CD4+ T cells in draining lymph nodes were increased with differential dynamic patterns after DTHA induction. Moreover, according to B-cell depletion experiments, it has been suggested that this cell type is not involved in DTHA. We show that DTHA is associated with increased levels of B cells in draining lymph nodes accompanied by increased levels of circulating IgG. Finally, using the anti-rheumatoid agents, methotrexate (MTX) and the anti-inflammatory drug dexamethasone (DEX), we show that MTX and DEX differentially suppressed DTHA-induced paw swelling and inflammation. The effects of MTX and DEX coincided with differential regulation of levels of Th1, Th17, and memory T cells as well as B cells. Our results implicate Th1, Th17, and memory T cells, together with activated B cells, to be involved and required for DTHA-induced paw swelling and inflammation.


Asunto(s)
Artritis Experimental/inmunología , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Hipersensibilidad Tardía/inmunología , Alérgenos/inmunología , Animales , Anticuerpos/inmunología , Células Cultivadas , Femenino , Pie , Memoria Inmunológica , Ganglios Linfáticos/inmunología , Ratones Endogámicos C57BL , Albúmina Sérica Bovina/inmunología , Bazo/inmunología
17.
PLoS One ; 15(3): e0229395, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32130250

RESUMEN

Inhibition of the key glycolytic activator 6-phosphofructokinase 2/fructose-2,6-bisphosphatase-3 (PFKFB3) by 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) strongly attenuates pathological angiogenesis in cancer and inflammation. In addition to modulating endothelial proliferation and migration, 3PO also dampens proinflammatory activation of endothelial cells and experimental inflammation in vivo, suggesting a potential for 3PO in the treatment of chronic inflammation. The aim of our study was to explore if the anti-inflammatory action of 3PO in human endothelial cells was mediated by inhibition of PFKFB3 and glycolysis and assess if other means of PFKFB3 inhibition reduced inflammatory activation in a similar manner. We found that 3PO caused a rapid and transient reduction in IL-1ß- and TNF-induced phosphorylation of both IKKα/ß and JNK, thus inhibiting signaling through the NFκB and the stress-activated kinase pathways. However, in contrast to 3PO-treatment, neither shRNA-mediated silencing of PFKFB3 nor treatment with the alternative PFKFB3 inhibitor 7,8-dihydroxy-3-(4-hydroxy-phenyl)-chromen-4-one (YN1) prevented cytokine-induced NFκB signaling and upregulation of the adhesion molecules VCAM-1 and E-selectin, implying off target effects of 3PO. Collectively, our results suggest that the anti-inflammatory action of 3PO in human endothelial cells is not limited to inhibition of PFKFB3 and cellular glycolysis.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Fosfofructoquinasa-2/metabolismo , Piridinas/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Quinasa I-kappa B/metabolismo , Inflamación/metabolismo , Inflamación/patología , Interleucina-1beta/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología
18.
J Appl Physiol (1985) ; 129(2): 297-310, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32584664

RESUMEN

The present study compared the effects of postexercise carbohydrate plus protein (CHO+PROT) and carbohydrate (CHO)-only supplementation on muscle glycogen metabolism, anabolic cell signaling, and subsequent exercise performance. Nine endurance-trained males cycled twice to exhaustion (muscle glycogen decreased from ~495 to ~125 mmol/kg dry wt) and received either CHO only (1.2 g·kg-1·h-1) or CHO+PROT (0.8/0.4 g·kg-1·h-1) during the first 90 min of recovery. Glycogen content was similar before the performance test after 5 h of recovery. Glycogen synthase (GS) fractional activity increased after exhaustive exercise and remained activated 5 h after, despite substantial glycogen synthesis (176.1 ± 19.1 and 204.6 ± 27.0 mmol/kg dry wt in CHO and CHO+PROT, respectively; P = 0.15). Phosphorylation of GS at site 3 and site 2+2a remained low during recovery. After the 5-h recovery, cycling time to exhaustion was improved by CHO+PROT supplementation compared with CHO supplementation (54.6 ± 11.0 vs. 46.1 ± 9.8 min; P = 0.009). After the performance test, muscle glycogen was equally reduced in CHO+PROT and CHO. Akt Ser473 and p70s6k Thr389 phosphorylation was elevated after 5 h of recovery. There were no differences in Akt Ser473, p70s6k Thr389, or TSC2 Thr1462 phosphorylation between treatments. Nitrogen balance was positive in CHO+PROT (19.6 ± 7.6 mg nitrogen/kg; P = 0.04) and higher than CHO (-10.7 ± 6.3 mg nitrogen/kg; P = 0.009). CHO+PROT supplementation during exercise recovery improved subsequent endurance performance relative to consuming CHO only. This improved performance after CHO+PROT supplementation could not be accounted for by differences in glycogen metabolism or anabolic cell signaling, but may have been related to differences in nitrogen balance.NEW & NOTEWORTHY Endurance athletes competing consecutive days need optimal dietary intake during the recovery period. We report that coingestion of protein and carbohydrate soon after exhaustive exercise, compared with carbohydrate only, resulted in better performance the following day. The better performance after coingestion of protein and carbohydrate was not associated with a higher rate of glycogen synthesis or activation of anabolic signaling compared with carbohydrate only. Importantly, nitrogen balance was positive after coingestion of protein and carbohydrate, which was not the case after intake of carbohydrate only, suggesting that protein synthesis contributes to the better performance the following day.


Asunto(s)
Carbohidratos de la Dieta , Resistencia Física , Proteínas Quinasas Activadas por AMP/metabolismo , Carbohidratos de la Dieta/metabolismo , Proteínas en la Dieta/metabolismo , Glucógeno/metabolismo , Humanos , Masculino , Músculo Esquelético/metabolismo , Fosforilación
19.
FASEB J ; 22(2): 466-76, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17928366

RESUMEN

In this study, we provide novel insight into the mechanism of how ERK2 can be sorted to different intracellular compartments and thereby mediate different responses. MEK1-activated ERK2 accumulated in the nucleus and induced proliferation. Conversely, MEK2-activated ERK2 was retained in the cytoplasm and allowed survival. Localization was a determinant for ERK2 functions since MEK1 switched from providing proliferation to be a mediator of survival when ERK2 was routed to the cytoplasm by the attachment of a nuclear export site. MEK1-mediated ERK2 nuclear translocation and proliferation were shown to depend on phosphorylation of S298 and T292 sites in the MEK1 proline-rich domain. These sites are phosphorylated on cellular adhesion in MEK1 but not MEK2. Whereas p21-activated kinase phosphorylates S298 and thus enhances the MEK1-ERK2 association, ERK2 phosphorylates T292, leading to release of active ERK2 from MEK1. On the basis of these results, we propose that the requirement of adhesion for cells to proliferate in response to growth factors, in part, may be explained by the MEK1 S298/T292 control of ERK2 nuclear translocation. In addition, we suggest that ERK2 intracellular localization determines whether growth factors mediate proliferation or survival and that the sorting occurs in an adhesion-dependent manner.


Asunto(s)
MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Transporte Activo de Núcleo Celular , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Células Cultivadas , ADN/biosíntesis , Regulación Enzimológica de la Expresión Génica , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 2/genética , Masculino , Proteína Quinasa 1 Activada por Mitógenos/genética , Mutación/genética , Fosfoserina/metabolismo , Fosfotreonina/metabolismo , Ratas , Ratas Wistar , Factor de Crecimiento Transformador beta/farmacología
20.
Cell Signal ; 20(6): 1169-78, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18406106

RESUMEN

Cyclic AMP (cAMP) is an important physiological growth inhibitor of lymphoid cells, and the cAMP/protein kinase A (PKA) pathway is disrupted in several immunological disorders and cancers. Epstein Barr virus (EBV) infection of B lymphocytes is responsible for the development of lymphoproliferative disease as well as certain B-lymphoid malignancies. Here we hypothesized that EBV infection might render B lymphocytes resistant to cAMP/PKA-mediated growth inhibition. To test this, we assessed the growth-inhibitory response of cAMP-elevating compounds such as forskolin and isoproterenol, as well as the PKA activator 8-CPT-cAMP in normal B lymphocytes, EBV-infected B cells and in the EBV-negative B lymphoid cell line Reh. We could demonstrate that EBV infection indeed abolished cAMP-mediated growth inhibition of B cells. The defect was pinpointed to defective adenylyl cyclase (AC) activation by forskolin and isoproterenol, resulting in reduced formation of cAMP and lack of PKA activation and CREB phosphorylation. In contrast, 8-CPT-cAMP which directly activates PKA was able to inhibit EBV-infected B cell growth. The physiological implications of these results were underlined by the observation that the ability of forskolin to inhibit camptothecin-induced apoptosis was abolished in EBV-infected B cells. We conclude that EBV infection of B cells abrogates the activation of AC and thereby cAMP formation, and that this dysfunction renders the cells resistant to growth inhibition via the cAMP/PKA pathway.


Asunto(s)
Adenilil Ciclasas/metabolismo , Linfocitos B/virología , Herpesvirus Humano 4/fisiología , Apoptosis/efectos de los fármacos , Linfocitos B/efectos de los fármacos , Linfocitos B/enzimología , Camptotecina/toxicidad , Línea Celular , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Colforsina/antagonistas & inhibidores , AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Isoproterenol/farmacología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA