Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Arch Insect Biochem Physiol ; 103(3): e21614, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31498475

RESUMEN

Histone acetylation is an evolutionarily conserved epigenetic mechanism of eukaryotic gene regulation which is tightly controlled by the opposing activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). In insects, life-history traits such as longevity and fecundity are severely affected by the suppression of HAT/HDAC activity, which can be achieved by RNA-mediated gene silencing or the application of chemical inhibitors. We used both experimental approaches to investigate the effect of HAT/HDAC inhibition in the pea aphid (Acyrthosiphon pisum) a model insect often used to study complex life-history traits. The silencing of HAT genes (kat6b, kat7, and kat14) promoted survival or increased the number of offspring, whereas targeting rpd3 (HDAC) reduced the number of viviparous offspring but increased the number of premature nymphs, suggesting a role in embryogenesis and eclosion. Specific chemical inhibitors of HATs/HDACs showed a remarkably severe impact on life-history traits, reducing survival, delaying development, and limiting the number of offspring. The selective inhibition of HATs and HDACs also had opposing effects on aphid body weight. The suppression of HAT/HDAC activity in aphids by RNA interference or chemical inhibition revealed similarities and differences compared to the reported role of these enzymes in other insects. Our data suggest that gene expression in A. pisum is regulated by multiple HATs/HDACs, as indicated by the fitness costs triggered by inhibitors that suppress several of these enzymes simultaneously. Targeting multiple HATs or HDACs with combined effects on gene regulation could, therefore, be a promising approach to discover novel targets for the management of aphid pests.


Asunto(s)
Áfidos/enzimología , Fertilidad/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Acetilación , Animales , Áfidos/crecimiento & desarrollo , Áfidos/metabolismo , Áfidos/fisiología , Histona Acetiltransferasas/genética , Histona Desacetilasas/genética , Longevidad , Procesamiento Proteico-Postraduccional
2.
Angew Chem Int Ed Engl ; 58(52): 18957-18963, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31693786

RESUMEN

Natural products (NPs) from microorganisms have been important sources for discovering new therapeutic and chemical entities. While their corresponding biosynthetic gene clusters (BGCs) can be easily identified by gene-sequence-similarity-based bioinformatics strategies, the actual access to these NPs for structure elucidation and bioactivity testing remains difficult. Deletion of the gene encoding the RNA chaperone, Hfq, results in strains losing the production of most NPs. By exchanging the native promoter of a desired BGC against an inducible promoter in Δhfq mutants, almost exclusive production of the corresponding NP from the targeted BGC in Photorhabdus, Xenorhabdus and Pseudomonas was observed including the production of several new NPs derived from previously uncharacterized non-ribosomal peptide synthetases (NRPS). This easyPACId approach (easy Promoter Activated Compound Identification) facilitates NP identification due to low interference from other NPs. Moreover, it allows direct bioactivity testing of supernatants containing secreted NPs, without laborious purification.


Asunto(s)
Productos Biológicos/química , Vías Biosintéticas/genética , Metabolómica/métodos , Humanos
3.
Dev Genes Evol ; 227(1): 1-9, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27743033

RESUMEN

Heat shock protein 83 (HSP83) is homologous to the chaperone HSP90. It has pleiotropic functions in Drosophila melanogaster, including the control of longevity and fecundity, and facilitates morphological evolution by buffering cryptic deleterious mutations in wild populations. In the pea aphid Acyrthosiphon pisum, HSP83 expression is moderately induced by bacterial infection but upregulated more strongly in response to heat stress and fungal infection. Stress-inducible heat shock proteins are of considerable evolutionary and ecological importance because they are known to buffer environmental variation and to influence fitness under non-optimal conditions. To investigate the functions of HSP83 in viviparous aphids, we used RNA interference to attenuate its expression and studied the impact on complex parameters. The RNA interference (RNAi)-mediated depletion of HSP83 expression in A. pisum reduced both longevity and fecundity, suggesting this chaperone has an evolutionarily conserved function in insects. Surprisingly, HSP83 depletion reduced the number of viviparous offspring while simultaneously increasing the number of premature nymphs developing in the ovaries, suggesting an unexpected role in aphid embryogenesis and eclosion. The present study indicates that reduced HSP83 expression in A. pisum reveals both functional similarities and differences compared with its reported roles in holometabolous insects. Its impact on aphid lifespan, fecundity, and embryogenesis suggests a function that determines their fitness. This could be achieved by targeting different client proteins, recruiting distinct co-chaperones or transposon activation.


Asunto(s)
Áfidos/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Insectos/metabolismo , Animales , Áfidos/crecimiento & desarrollo , Desarrollo Embrionario , Femenino , Fertilidad , Longevidad
4.
J Med Chem ; 65(3): 2297-2312, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34986308

RESUMEN

The development of novel and safe insecticides remains an important need for a growing world population to protect crops and animal and human health. New chemotypes modulating the insect nicotinic acetylcholine receptors have been recently brought to the agricultural market, yet with limited understanding of their molecular interactions at their target receptor. Herein, we disclose the first crystal structures of these insecticides, namely, sulfoxaflor, flupyradifurone, triflumezopyrim, flupyrimin, and the experimental compound, dicloromezotiaz, in a double-mutated acetylcholine-binding protein which mimics the insect-ion-channel orthosteric site. Enabled by these findings, we discovered novel pharmacophores with a related mode of action, and we describe herein their design, synthesis, and biological evaluation.


Asunto(s)
Diseño de Fármacos , Proteínas de Insectos/metabolismo , Insecticidas/síntesis química , Receptores Nicotínicos/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , 4-Butirolactona/metabolismo , Animales , Sitios de Unión , Escarabajos/efectos de los fármacos , Escarabajos/metabolismo , Cristalografía por Rayos X , Humanos , Control de Insectos/métodos , Proteínas de Insectos/química , Proteínas de Insectos/genética , Insecticidas/metabolismo , Insecticidas/farmacología , Conformación Molecular , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Piridinas/química , Piridinas/metabolismo , Pirimidinonas/química , Pirimidinonas/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Compuestos de Azufre/química , Compuestos de Azufre/metabolismo
5.
J Virol ; 84(18): 9310-7, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20631135

RESUMEN

Tomato yellow leaf curl virus (TYLCV) (Geminiviridae: Begomovirus) is exclusively vectored by the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). TYLCV transmission depends upon a 63-kDa GroEL protein produced by the vector's endosymbiotic bacteria. B. tabaci is a species complex comprising several genetically distinct biotypes that show different secondary-symbiont fauna. In Israel, the B biotype harbors Hamiltonella, and the Q biotype harbors Wolbachia and Arsenophonus. Both biotypes harbor Rickettsia and Portiera (the obligatory primary symbionts). The aim of this study was to determine which B. tabaci symbionts are involved in TYLCV transmission using B. tabaci populations collected in Israel. Virus transmission assays by B. tabaci showed that the B biotype efficiently transmits the virus, while the Q biotype scarcely transmits it. Yeast two-hybrid and protein pulldown assays showed that while the GroEL protein produced by Hamiltonella interacts with TYLCV coat protein, GroEL produced by Rickettsia and Portiera does not. To assess the role of Wolbachia and Arsenophonus GroEL proteins (GroELs), we used an immune capture PCR (IC-PCR) assay, employing in vivo- and in vitro-synthesized GroEL proteins from all symbionts and whitefly artificial feeding through membranes. Interaction between GroEL and TYLCV was found to occur in the B biotype, but not in the Q biotype. This assay further showed that release of virions protected by GroEL occurs adjacent to the primary salivary glands. Taken together, the GroEL protein produced by Hamiltonella (present in the B biotype, but absent in the Q biotype) facilitates TYLCV transmission. The other symbionts from both biotypes do not seem to be involved in transmission of this virus.


Asunto(s)
Begomovirus/aislamiento & purificación , Enterobacteriaceae/fisiología , Hemípteros/microbiología , Hemípteros/virología , Enfermedades de las Plantas/virología , Simbiosis , Wolbachia/fisiología , Animales , Proteínas Bacterianas/metabolismo , Chaperonina 60/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , Vectores de Enfermedades , Enterobacteriaceae/metabolismo , Israel , Datos de Secuencia Molecular , Unión Proteica , Análisis de Secuencia de ADN , Técnicas del Sistema de Dos Híbridos , Wolbachia/metabolismo
6.
BMC Microbiol ; 10: 142, 2010 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-20462452

RESUMEN

BACKGROUND: Whiteflies are cosmopolitan phloem-feeding pests that cause serious damage to many crops worldwide due to direct feeding and vectoring of many plant viruses. The sweetpotato whitefly Bemisia tabaci (Gennadius) and the greenhouse whitefly Trialeurodes vaporariorum (Westwood) are two of the most widespread and damaging whitefly species. To complete their unbalanced diet, whiteflies harbor the obligatory bacterium Portiera aleyrodidarum. B. tabaci further harbors a diverse array of secondary symbionts, including Hamiltonella, Arsenophonus, Cardinium, Wolbachia, Rickettsia and Fritschea. T. vaporariorum is only known to harbor P. aleyrodidarum and Arsenophonus. We conducted a study to survey the distribution of whitefly species in Croatia, their infection status by secondary symbionts, and the spatial distribution of these symbionts in the developmental stages of the two whitefly species. RESULTS: T. vaporariorum was found to be the predominant whitefly species across Croatia, while only the Q biotype of B. tabaci was found across the coastal part of the country. Arsenophonus and Hamiltonella were detected in collected T. vaporariorum populations, however, not all populations harbored both symbionts, and both symbionts showed 100% infection rate in some of the populations. Only the Q biotype of B. tabaci was found in the populations tested and they harbored Hamiltonella, Rickettsia, Wolbachia and Cardinium, while Arsenophonus and Fritschea were not detected in any B. tabaci populations. None of the detected symbionts appeared in all populations tested, and multiple infections were detected in some of the populations. All endosymbionts tested were localized inside the bacteriocyte in both species, but only Rickettsia and Cardinium in B. tabaci showed additional localization outside the bacteriocyte. CONCLUSIONS: Our study revealed unique co-infection patterns by secondary symbionts in B. tabaci and T. vaporariorum. Co-sharing of the bacteriocyte by the primary and different secondary symbionts is maintained through vertical transmission via the egg, and is unique to whiteflies. This system provides opportunities to study interactions among symbionts that co-inhabit the same cell in the same host: these can be cooperative or antagonistic, may affect the symbiotic contents over time, and may also affect the host by competing with the primary symbiont for space and resources.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Hemípteros/crecimiento & desarrollo , Hemípteros/microbiología , Simbiosis , Animales , Croacia , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Geografía , Hibridación Fluorescente in Situ , Reacción en Cadena de la Polimerasa , Densidad de Población , ARN Ribosómico 16S/genética , ARN Ribosómico 23S/genética , Análisis de Secuencia de ADN
7.
Insects ; 11(5)2020 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-32357443

RESUMEN

CREB-binding protein (p300/CBP) is a universal transcriptional co-regulator with lysine acetyltransferase activity. Drosophila melanogaster p300/CBP is a well-known regulator of embryogenesis, and recent studies in beetles and cockroaches have revealed the importance of this protein during post-embryonic development and endocrine signaling. In pest insects, p300/CBP may therefore offer a useful target for control methods based on RNA interference (RNAi). We investigated the role of p300/CBP in the pea aphid (Acyrthosiphon pisum), a notorious pest insect used as a laboratory model for the analysis of complex life-history traits. The RNAi-based attenuation of A. pisum p300/CBP significantly reduced the aphid lifespan and number of offspring, as well as shortening the reproductive phase, suggesting the manipulation of this gene contributes to accelerated senescence. Furthermore, injection of p300/CBP dsRNA also reduced the number of viable offspring and increased the number of premature nymphs, which developed in abnormally structured ovaries. Our data confirm the evolutionarily conserved function of p300/CBP during insect embryogenesis and show that the protein has a critical effect on longevity, reproduction and development in A. pisum. The potent effect of p300/CBP silencing indicates that this regulatory protein is an ideal target for RNAi-based aphid control.

8.
Insects ; 11(8)2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32722463

RESUMEN

Insect pests reduce global crop yields by up to 20%, but the most effective control measures are currently based on environmentally hazardous chemical pesticides. An alternative, ecologically beneficial pest-management strategy involves the use of microbial pathogens (or active compounds and extracts derived from them) that naturally target selected insect pests. A novel strain of the bacterium Leuconostoc pseudomesenteroides showed promising activity in our preliminary tests. Here, we investigated its effects in more detail, focusing on drosophilid and aphid pests by testing the survival of two species representing the family Drosophilidae (Drosophila suzukii and D. melanogaster) and one representing the family Aphididae (Acyrthosiphon pisum). We used oral and septic infection models to administer living bacteria or cell-free extracts to adult flies and aphid nymphs. We found that infection with living bacteria significantly reduced the survival of our insect models, whereas the administration of cell-free extracts had a significant effect only in aphids. These results confirm that L. pseudomesenteroides has potential as a new biocontrol agent for sustainable pest management.

9.
Front Physiol ; 10: 438, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31057424

RESUMEN

Aphids are economically important pest insects that damage plants by phloem feeding and the transmission of plant viruses. Their ability to feed exclusively on nutritionally poor phloem sap is dependent on the obligatory symbiotic bacterium Buchnera aphidicola, but additional facultative symbionts may also be present, a common example of which is Serratia symbiotica. Many Serratia species secrete extracellular enzymes, so we hypothesised that S. symbiotica may produce proteases that help aphids to feed on plants. Molecular analysis, including fluorescence in situ hybridization (FISH), revealed that S. symbiotica colonises the gut, salivary glands and mouthparts (including the stylet) of the pea aphid Acyrthosiphon pisum, providing a mechanism to transfer the symbiont into host plants. S. symbiotica was also detected in plant tissues wounded by the penetrating stylet and was transferred to naïve aphids feeding on plants containing this symbiont. The maintenance of S. symbiotica by repeated transmission via plants may explain the high frequency of this symbiont in aphid populations. Proteomic analysis of the supernatant from a related but cultivable S. symbiotica strain cultured in liquid medium revealed the presence of known and novel proteases including metalloproteases. The corresponding transcripts encoding these S. symbiotica enzymes were detected in A. pisum and in plants carrying the symbiont, although the mRNA was much more abundant in the aphids. Our data suggest that enzymes from S. symbiotica may facilitate the digestion of plant proteins, thereby helping to suppress plant defense, and that the symbionts are important mediators of aphid-plant interactions.

10.
Toxins (Basel) ; 11(10)2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31557881

RESUMEN

Ant venoms contain many small, linear peptides, an untapped source of bioactive peptide toxins. The control of agricultural insect pests currently depends primarily on chemical insecticides, but their intensive use damages the environment and human health, and encourages the emergence of resistant pest populations. This has promoted interest in animal venoms as a source of alternative, environmentally-friendly bio-insecticides. We tested the crude venom of the predatory ant, Manica rubida, and observed severe fitness costs in the parthenogenetic pea aphid (Acyrthosiphon pisum), a common agricultural pest. Therefore, we explored the M. rubida venom peptidome and identified a novel decapeptide U-MYRTX-MANr1 (NH2-IDPKVLESLV-CONH2) using a combination of Edman degradation and de novo peptide sequencing. Although this myrmicitoxin was inactive against bacteria and fungi, it reduced aphid survival and reproduction. Furthermore, both crude venom and U-MYRTX-MANr1 reversibly paralyzed injected aphids and induced a loss of body fluids. Components of M. rubida venom may act on various biological targets including ion channels and hemolymph coagulation proteins, as previously shown for other ant venom toxins. The remarkable insecticidal activity of M. rubida venom suggests it may be a promising source of additional bio-insecticide leads.


Asunto(s)
Venenos de Hormiga/análisis , Insecticidas/aislamiento & purificación , Oligopéptidos/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Venenos de Hormiga/farmacología , Áfidos , Insecticidas/farmacología , Oligopéptidos/química , Oligopéptidos/farmacología , Cicatrización de Heridas
11.
Insects ; 10(2)2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30717163

RESUMEN

Ants are a biodiverse group of insects that have evolved toxic venom containing many undiscovered bioactive molecules. In this study, we found that the venom of the ruby ant Myrmica rubra is a rich source of peptides. LC-MS analysis revealed the presence of 142 different peptides varying in molecular weight, sequence length, and hydrophobicity. One of the most abundant peaks was selected for further biochemical and functional characterization. Combined Edman degradation and de novo peptide sequencing revealed the presence of a novel decapeptide (myrmicitoxin) with the amino acid sequence NH2-IDPKLLESLA-CONH2. The decapeptide was named U-MYRTX-MRArub1 and verified against a synthetic standard. The amidated peptide was tested in a synthetic form to determine the antimicrobial activity towards the bacterial pathogens and insecticidal potential against pea aphids (Acyrthosiphon pisum). This peptide did not show antimicrobial activity but it significantly reduced the survival of aphids. It also increased the sensitivity of the aphids to two commonly used chemical insecticides (imidacloprid and methomyl). Since ant venom research is still in its infancy, the findings of this first study on venom peptides derived from M. rubra highlight these insects as an important and rich source for discovery of novel lead structures with potential application in pest control.

12.
Pest Manag Sci ; 74(8): 1829-1836, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29443436

RESUMEN

BACKGROUND: Aphids are agricultural pests that damage crops by direct feeding and by vectoring important plant viruses. Bacterial symbionts can influence aphid biology, e.g. by providing essential nutrients or facilitating adaptations to biotic and abiotic stress. RESULTS: We investigated the pea aphid (Acyrthosiphon pisum Harris) and its commonly associated secondary bacterial symbiont Serratia symbiotica to study the effect of this symbiont on host fitness and susceptibility to the insecticides imidacloprid, chlorpyrifos methyl, methomyl, cyantraniliprole and spirotetramat. There is emerging evidence that members of the genus Serratia can degrade and/or detoxify diverse insecticides. Therefore, we hypothesized that S. symbiotica may promote resistance to these artificial stress agents in aphids. Our results showed that Serratia-infected aphids were more susceptible to most of the tested insecticides than non-infected aphids. This probably reflects the severe fitness costs associated with S. symbiotica, which negatively affects development, reproduction and body weight. CONCLUSION: Our study demonstrates that S. symbiotica plays an important role in the ability of aphid hosts to tolerate insecticides. These results provide insight into the potential changes in tolerance to insecticides in the field because there is a continuous and dynamic process of symbiont acquisition and loss that may directly affect host biology. © 2018 Society of Chemical Industry.


Asunto(s)
Áfidos/fisiología , Aptitud Genética , Inactivación Metabólica , Insecticidas/metabolismo , Serratia/fisiología , Simbiosis , Animales , Áfidos/efectos de los fármacos , Áfidos/crecimiento & desarrollo , Áfidos/microbiología , Ninfa/efectos de los fármacos , Ninfa/genética , Ninfa/crecimiento & desarrollo , Ninfa/fisiología
13.
Toxins (Basel) ; 9(9)2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28837113

RESUMEN

Aphids are severe agricultural pests that damage crops by feeding on phloem sap and vectoring plant pathogens. Chemical insecticides provide an important aphid control strategy, but alternative and sustainable control measures are required to avoid rapidly emerging resistance, environmental contamination, and the risk to humans and beneficial organisms. Aphids are dependent on bacterial symbionts, which enable them to survive on phloem sap lacking essential nutrients, as well as conferring environmental stress tolerance and resistance to parasites. The evolution of aphids has been accompanied by the loss of many immunity-related genes, such as those encoding antibacterial peptides, which are prevalent in other insects, probably because any harm to the bacterial symbionts would inevitably affect the aphids themselves. This suggests that antimicrobial peptides (AMPs) could replace or at least complement conventional insecticides for aphid control. We fed the pea aphids (Acyrthosiphon pisum) with AMPs from the venom glands of scorpions. The AMPs reduced aphid survival, delayed their reproduction, displayed in vitro activity against aphid bacterial symbionts, and reduced the number of symbionts in vivo. Remarkably, we found that some of the scorpion AMPs compromised the aphid bacteriome, a specialized organ that harbours bacterial symbionts. Our data suggest that scorpion AMPs holds the potential to be developed as bio-insecticides, and are promising candidates for the engineering of aphid-resistant crops.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/toxicidad , Áfidos/efectos de los fármacos , Insecticidas/toxicidad , Control Biológico de Vectores/métodos , Escorpiones , Administración Oral , Animales , Áfidos/microbiología , Microbiota/efectos de los fármacos , Reproducción/efectos de los fármacos
14.
Insect Biochem Mol Biol ; 83: 44-53, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28235562

RESUMEN

Lucilia sericata maggots are the only species currently approved for maggot debridement therapy (MDT), an alternative treatment for chronic and recalcitrant wounds. Maggots promote wound debridement, disinfection and healing by producing a complex mixture of proteins, peptides and low-molecular-weight compounds in their secretions and excretions, but the individual components are not well characterized at the molecular level. Here we investigated the purine catabolism pathway in L. sericata, focusing on the production of allantoin by Urate Oxidase (UO), which is thought to promote wound healing. We produced recombinant L. sericata UO in Escherichia coli, and characterized the properties of the pure enzyme in terms of the optimum pH (7-10) and temperature (20-25 °C), its stability, sensitivity to inhibition and ion dependency. We used quantitative RT-PCR and RNA in situ hybridization to monitor the expression of the UO gene, and we used a guinea pig anti-UO antibody to detect the native enzyme by western blot and by florescence immunohistochemistry in larval tissues. We found that L. sericata UO is exclusively present in the larval excretion organ (the Malpighian tubes) and is freely available in the cytoplasm rather than restricted to a specific subcellular compartment. Allantoin is a final product of L. sericata purine catabolism. It is produced by UO in the Malpighian tubes to remove uric acid from the hemolymph and is consequently excreted via the hindgut. Our findings confirm the hypothesis that both actively secreted molecules and excretion products contribute to the beneficial effects of MDT.


Asunto(s)
Alantoína/metabolismo , Dípteros/enzimología , Túbulos de Malpighi/metabolismo , Urato Oxidasa/metabolismo , Animales , Larva/enzimología
15.
Insects ; 8(4)2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-29053633

RESUMEN

Bemisia tabaci (Gennadius), Trialeurodes vaporariorum (Westwood), and Siphoninus phillyreae (Haliday) are whitefly species that harm agricultural crops in many regions of the world. These insects live in close association with bacterial symbionts that affect host fitness and adaptation to the environment. In the current study, we surveyed the infection of whitefly populations in Southeast Europe by various bacterial symbionts and performed phylogenetic analyses on the different symbionts detected. Arsenophonus and Hamiltonella were the most prevalent symbionts in all three whitefly species. Rickettsia was found to infect mainly B. tabaci, while Wolbachia mainly infected both B. tabaci and S. phillyreae. Furthermore, Cardinium was rarely found in the investigated whitefly populations, while Fritschea was never found in any of the whitefly species tested. Phylogenetic analyses revealed a diversity of several symbionts (e.g., Hamiltonella, Arsenophonus, Rickettsia), which appeared in several clades. Reproductively isolated B. tabaci and T. vaporariorum shared the same (or highly similar) Hamiltonella and Arsenophonus, while these symbionts were distinctive in S. phillyreae. Interestingly, Arsenophonus from S. phillyreae did not cluster with any of the reported sequences, which could indicate the presence of Arsenophonus, not previously associated with whiteflies. In this study, symbionts (Wolbachia, Rickettsia, and Cardinium) known to infect a wide range of insects each clustered in the same clades independently of the whitefly species. These results indicate horizontal transmission of bacterial symbionts between reproductively isolated whitefly species, a mechanism that can establish new infections that did not previously exist in whiteflies.

17.
J Vis Exp ; (84): e51030, 2014 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-24637389

RESUMEN

Fluorescence in situ hybridization (FISH) is a name given to a variety of techniques commonly used for visualizing gene transcripts in eukaryotic cells and can be further modified to visualize other components in the cell such as infection with viruses and bacteria. Spatial localization and visualization of viruses and bacteria during the infection process is an essential step that complements expression profiling experiments such as microarrays and RNAseq in response to different stimuli. Understanding the spatiotemporal infections with these agents complements biological experiments aimed at understanding their interaction with cellular components. Several techniques for visualizing viruses and bacteria such as reporter gene systems or immunohistochemical methods are time-consuming, and some are limited to work with model organisms and involve complex methodologies. FISH that targets RNA or DNA species in the cell is a relatively easy and fast method for studying spatiotemporal localization of genes and for diagnostic purposes. This method can be robust and relatively easy to implement when the protocols employ short hybridizing, commercially-purchased probes, which are not expensive. This is particularly robust when sample preparation, fixation, hybridization, and microscopic visualization do not involve complex steps. Here we describe a protocol for localization of bacteria and viruses in insect and plant tissues. The method is based on simple preparation, fixation, and hybridization of insect whole mounts and dissected organs or hand-made plant sections, with 20 base pairs short DNA probes conjugated to fluorescent dyes on their 5' or 3' ends. This protocol has been successfully applied to a number of insect and plant tissues, and can be used to analyze expression of mRNAs or other RNA or DNA species in the cell.


Asunto(s)
Begomovirus/aislamiento & purificación , Hemípteros/microbiología , Hibridación Fluorescente in Situ/métodos , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Animales , Begomovirus/genética , ADN Bacteriano/análisis , ADN Viral/análisis , Femenino , Hemípteros/virología , Solanum lycopersicum/microbiología , Solanum lycopersicum/virología , Enfermedades de las Plantas/virología , Plantas/virología , ARN Bacteriano/análisis , ARN Mensajero/análisis , ARN Viral/análisis , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA