Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Br J Nutr ; 121(9): 961-973, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30791962

RESUMEN

Zn plays an important role in maintaining the anti-oxidant status within the heart and helps to counter the acute redox stress that occurs during myocardial ischaemia and reperfusion. Individuals with low Zn levels are at greater risk of developing an acute myocardial infarction; however, the impact of this on the extent of myocardial injury is unknown. The present study aimed to compare the effects of dietary Zn depletion with in vitro removal of Zn (N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN)) on the outcome of acute myocardial infarction and vascular function. Male Sprague-Dawley rats were fed either a Zn-adequate (35 mg Zn/kg diet) or Zn-deficient (<1 mg Zn/kg diet) diet for 2 weeks before heart isolation. Perfused hearts were subjected to a 30 min ischaemia/2 h reperfusion (I/R) protocol, during which time ventricular arrhythmias were recorded and after which infarct size was measured, along with markers of anti-oxidant status. In separate experiments, hearts were challenged with the Zn chelator TPEN (10 µm) before ischaemia onset. Both dietary and TPEN-induced Zn depletion significantly extended infarct size; dietary Zn depletion was associated with reduced total cardiac glutathione (GSH) levels, while TPEN decreased cardiac superoxide dismutase 1 levels. TPEN, but not dietary Zn depletion, also suppressed ventricular arrhythmias and depressed vascular responses to nitric oxide. These findings demonstrate that both modes of Zn depletion worsen the outcome from I/R but through different mechanisms. Dietary Zn deficiency, resulting in reduced cardiac GSH, is the most appropriate model for determining the role of endogenous Zn in I/R injury.


Asunto(s)
Dieta/efectos adversos , Glutatión/metabolismo , Isquemia Miocárdica/etiología , Daño por Reperfusión Miocárdica/etiología , Zinc/deficiencia , Animales , Corazón/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley
2.
Pharm Res ; 28(4): 886-96, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21213024

RESUMEN

PURPOSE: The influence of polymer architecture on cellular uptake and transport across Caco-2 cells of novel amphiphilic polyelectrolyte-insulin nanocomplexes was investigated. METHOD: Polyallylamine (PAA) (15 kDa) was grafted with palmitoyl chains (Pa) and subsequently modified with quaternary ammonium moieties (QPa). These two amphiphilic polyelectrolytes (APs) were tagged with rhodamine, and their uptake by Caco-2 cells or their polyelectrolyte complexes (PECs) with fluorescein isothiocyanate-insulin (FITC-insulin) uptake was investigated using fluorescence microscopy. The integrity of the monolayer was determined by measurement of transepithelial electrical resistance (TEER), and insulin transport across the monolayers was determined. RESULT: Pa and insulin were co-localised in cell membranes, while QPa complexes were found within the cytoplasm. QPa complex uptake was not affected by calcium, cytochalasin D or nocodazole. Uptake was reduced by co-incubation with sodium azide, an active transport inhibitor. Both polymers opened tight junctions reversibly, and insulin transport through monolayers increased when QPa or Pa was used. CONCLUSION: These APs have been shown to be taken up by Caco-2 cells and reversibly open tight cell junctions. Further work is required to optimise these formulations with a view to maximising their potential to facilitate oral delivery of insulin.


Asunto(s)
Electrólitos/química , Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Nanoconjugados/química , Tensoactivos/química , Administración Oral , Transporte Biológico , Células CACO-2 , Técnicas de Cultivo de Célula , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacocinética , Insulina/química , Insulina/farmacocinética , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Ácidos Palmíticos/química , Poliaminas/química , Succinimidas/química , Trometamina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA