Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecol Appl ; 33(4): e2844, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36922398

RESUMEN

Frequent-fire forests were once heterogeneous at multiple spatial scales, which contributed to their resilience to severe fire. While many studies have characterized historical spatial patterns in frequent-fire forests, fewer studies have investigated their temporal dynamics. We investigated the influences of fire and climate on the timing of conifer recruitment in old-growth Jeffrey pine-mixed conifer forests in the Sierra San Pedro Martir (SSPM) and the eastern slope of the Sierra Nevada. Additionally, we evaluated the impacts of fire exclusion and recent climate change on recruitment levels using statistical models with realized as well as fire suppression and climate change-free counterfactual scenarios. Excessive soil drying from anthropogenic climate change resulted in diminished recruitment in the SSPM but not in the Sierra Nevada. Longer fire-free intervals attributable to fire suppression and exclusion resulted in greater rates of recruitment across all sites but was particularly pronounced in the Sierra Nevada, where suppression began >100 years ago and recruitment was 28 times higher than the historical fire return interval scenario. This demonstrates the profound impact of fire's removal on tree recruitment in Sierra Nevada forests even in the context of recent climate change. Tree recruitment at the SSPM coincided with the early-20th-century North American pluvial, as well as a fire-quiescent period in the late 18th and early 19th centuries. Episodic recruitment occurred in the SSPM with no "average" recruitment over the last three centuries. We found that temporal heterogeneity, in conjunction with spatial heterogeneity, are critical components of frequent-fire-adapted forests. Episodic recruitment could be a desirable characteristic of frequent-fire-adapted forests, and this might be more amenable to climate change impacts that forecast more variable precipitation patterns in the future. One key to this outcome would be for frequent fire to continue to shape these forests versus continued emphasis on fire suppression in California.


Asunto(s)
Tracheophyta , Árboles , México , Bosques , California
2.
J Environ Manage ; 304: 114255, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34942550

RESUMEN

Wildfire sizes and proportions burned with high severity effects are increasing in seasonally dry forests, especially in the western USA. A critical need in efforts to restore or maintain these forest ecosystems is to determine where fuel build-up caused by fire exclusion reaches thresholds that compromise resilience to fire. Empirical studies identifying drivers of fire severity patterns in actual wildfires can be confounded by co-variation of vegetation and topography and the stochastic effects of weather and rarely consider long-term changes in fuel caused by fire exclusion. To overcome these limitations, we used a spatially explicit fire model (FlamMap) to compare potential fire behavior by topographic position in Lassen Volcanic National Park (LAVO), California, a large (43,000 ha), mountainous, unlogged landscape with extensive historical and contemporary fuels data. Fuel loads were uniformly distributed and incrementally increased across the landscape, meaning variation in fire behavior within each simulation was due to topography and among simulations, to fuels. We analyzed changes in fire line intensity (FLI) and crown fire potential as surface and canopy fuels increased from historical to contemporary levels and with percentile and actual wildfire weather conditions. Sensitivity to the influence of fuel build-up on fire behavior varied by topographic position. Steep slopes and ridges were most sensitive. At lower surface fuel loads, under pre-exclusion and contemporary canopy conditions, fire behavior was comparable and remained surface-type. As fuels increased, FLI and passive crown fire increased on steep slopes and ridgetops but remained largely unchanged on gentle slopes. Topographic variability in fire behavior was greatest with intermediate fuels. At higher surface fuel loads, under contemporary canopy fuels, passive crown fire dominated all topographic positions. With LAVO's current surface fuels, the area with potential for passive crown fire during actual fire weather increased from 6% pre-exclusion to 34% due to canopy fuel build-up. For topographically diverse landscapes, the results highlight where contemporary fire characteristics are most likely to deviate from historical patterns and may help managers prioritize locations for prescribed burning and managed wildfire to increase fire resilience in fuel rich landscapes.


Asunto(s)
Ecosistema , Incendios Forestales , California , Bosques , Tiempo (Meteorología)
3.
Proc Natl Acad Sci U S A ; 113(48): 13684-13689, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27849589

RESUMEN

Large wildfires in California cause significant socioecological impacts, and half of the federal funds for fire suppression are spent each year in California. Future fire activity is projected to increase with climate change, but predictions are uncertain because humans can modulate or even override climatic effects on fire activity. Here we test the hypothesis that changes in socioecological systems from the Native American to the current period drove shifts in fire activity and modulated fire-climate relationships in the Sierra Nevada. We developed a 415-y record (1600-2015 CE) of fire activity by merging a tree-ring-based record of Sierra Nevada fire history with a 20th-century record based on annual area burned. Large shifts in the fire record corresponded with socioecological change, and not climate change, and socioecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire-climate relationships were strongest after Native American depopulation-following mission establishment (ca. 1775 CE)-reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American settlement (ca. 1865 CE), fire activity declined, and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1904 CE). The amplification and buffering of fire-climate relationships by humans underscores the need for parameterizing thresholds of human- vs. climate-driven fire activity to improve the skill and value of fire-climate models for addressing the increasing fire risk in California.

4.
Ecology ; 92(3): 590-601, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21608468

RESUMEN

The influence of substrate on long-term vegetation dynamics has received little attention, and yet nutrient-limited ecosystems have some of the highest levels of endemism in the world. The diverse geology of the Klamath Mountains of northern California (USA) allows examination of the long-term influence of edaphic constraints in subalpine forests through a comparison of vegetation histories between nutrient-limited ultramafic substrates and terrain that is more fertile. Pollen and charcoal records spanning up to 15000 years from ultramafic settings reveal a distinctly different vegetation history compared to other soil types. In non-ultramafic settings, the dominant trees and shrubs shifted in elevation in response to Holocene climate variations resulting in compositional and structural changes, whereas on ultramafic substrates changes were primarily structural, not compositional. Fire activity was similar through most of the Holocene with the exception of declines over the last 4000 years on ultramafic substrates, likely due to the reduction of understory fuels and cooler wetter conditions than in the middle Holocene. These results suggest that the tree and shrub distributions were more responsive to past climate changes on non-ultramafic substrates compared to those on ultramafic substrates. The combination of these dynamics may help explain high levels of plant diversity in the Klamath Mountains and provide insights for managing these complex ecosystems.


Asunto(s)
Biodiversidad , Suelo , Árboles/fisiología , California , Cambio Climático , Incendios , Fenómenos Geológicos
5.
Ecol Appl ; 19(2): 305-20, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19323192

RESUMEN

Forest structure and species composition in many western U.S. coniferous forests have been altered through fire exclusion, past and ongoing harvesting practices, and livestock grazing over the 20th century. The effects of these activities have been most pronounced in seasonally dry, low and mid-elevation coniferous forests that once experienced frequent, low to moderate intensity, fire regimes. In this paper, we report the effects of Fire and Fire Surrogate (FFS) forest stand treatments on fuel load profiles, potential fire behavior, and fire severity under three weather scenarios from six western U.S. FFS sites. This replicated, multisite experiment provides a framework for drawing broad generalizations about the effectiveness of prescribed fire and mechanical treatments on surface fuel loads, forest structure, and potential fire severity. Mechanical treatments without fire resulted in combined 1-, 10-, and 100-hour surface fuel loads that were significantly greater than controls at three of five FFS sites. Canopy cover was significantly lower than controls at three of five FFS sites with mechanical-only treatments and at all five FFS sites with the mechanical plus burning treatment; fire-only treatments reduced canopy cover at only one site. For the combined treatment of mechanical plus fire, all five FFS sites with this treatment had a substantially lower likelihood of passive crown fire as indicated by the very high torching indices. FFS sites that experienced significant increases in 1-, 10-, and 100-hour combined surface fuel loads utilized harvest systems that left all activity fuels within experimental units. When mechanical treatments were followed by prescribed burning or pile burning, they were the most effective treatment for reducing crown fire potential and predicted tree mortality because of low surface fuel loads and increased vertical and horizontal canopy separation. Results indicate that mechanical plus fire, fire-only, and mechanical-only treatments using whole-tree harvest systems were all effective at reducing potential fire severity under severe fire weather conditions. Retaining the largest trees within stands also increased fire resistance.


Asunto(s)
Conservación de los Recursos Naturales , Incendios , Agricultura Forestal/métodos , Árboles , Noroeste de Estados Unidos , Estados del Pacífico , Densidad de Población , Estaciones del Año , Sudoeste de Estados Unidos , Árboles/anatomía & histología , Tiempo (Meteorología)
6.
Ecol Appl ; 19(2): 285-304, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19323191

RESUMEN

Changes in vegetation and fuels were evaluated from measurements taken before and after fuel reduction treatments (prescribed fire, mechanical treatments, and the combination of the two) at 12 Fire and Fire Surrogate (FFS) sites located in forests with a surface fire regime across the conterminous United States. To test the relative effectiveness of fuel reduction treatments and their effect on ecological parameters we used an information-theoretic approach on a suite of 12 variables representing the overstory (basal area and live tree, sapling, and snag density), the understory (seedling density, shrub cover, and native and alien herbaceous species richness), and the most relevant fuel parameters for wildfire damage (height to live crown, total fuel bed mass, forest floor mass, and woody fuel mass). In the short term (one year after treatment), mechanical treatments were more effective at reducing overstory tree density and basal area and at increasing quadratic mean tree diameter. Prescribed fire treatments were more effective at creating snags, killing seedlings, elevating height to live crown, and reducing surface woody fuels. Overall, the response to fuel reduction treatments of the ecological variables presented in this paper was generally maximized by the combined mechanical plus burning treatment. If the management goal is to quickly produce stands with fewer and larger diameter trees, less surface fuel mass, and greater herbaceous species richness, the combined treatment gave the most desirable results. However, because mechanical plus burning treatments also favored alien species invasion at some sites, monitoring and control need to be part of the prescription when using this treatment.


Asunto(s)
Conservación de los Recursos Naturales , Incendios , Agricultura Forestal/métodos , Árboles , Biodiversidad , Densidad de Población , Estaciones del Año , Árboles/anatomía & histología , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA