Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Vet Res ; 85(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38029522

RESUMEN

OBJECTIVE: To identify protective equine rotavirus group A (ERVA) VP8 epitopes and demonstrate that immunizing hens with synthetic peptides based on these epitopes would yield high-titered, neutralizing egg yolk antibodies for potential application in foals. ANIMALS: 26 rotavirus-positive, client-owned foals were included in the study. Five white leghorn hens were used for antibody production. METHODS: Chicken antibodies were raised against 3 synthetic epitope peptides from the VP8 protein of the common ERVA P-type, P4[12] using CD40-targeted streptavidin-peptide complexes. Antipeptide serum- and egg yolk antibodies were subject to ELISA and in vitro virus neutralization assays to evaluate binding and neutralization activities. Lyophilized anti-VP8 egg yolk antibodies were orally administered (30 g; q 24 h for 5 days) to foals with rotaviral diarrhea. Physical examinations were performed daily. The duration of diarrhea and any adverse effects were recorded. RESULTS: CD40-targeted vaccination of hens generated high titers of anti-VP8 serum and egg yolk antibodies after just 3 immunizations. These antibodies prevented in vitro infection of ERVA with titers of 128 in the serum and 94.5 in the yolk. Oral administration (30 g; q 24 h for 5 days) of lyophilized hyperimmune egg yolk to foals with rotaviral diarrhea did not reveal any adverse effects of the treatment. CLINICAL RELEVANCE: This study demonstrated that antibodies raised against neutralizing epitopes of the ERVA VP8 protein could prevent ERVA infection in vitro. Based on these results and previous work in other animals, in vivo evaluation of the therapeutic efficacy of anti-VP8 egg yolk antibodies is warranted.


Asunto(s)
Diarrea , Rotavirus , Humanos , Animales , Caballos , Femenino , Proteínas de la Cápside , Pollos , Epítopos , Anticuerpos , Diarrea/prevención & control , Diarrea/veterinaria , Péptidos , Anticuerpos Antivirales
2.
Front Immunol ; 13: 840077, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359996

RESUMEN

Electron beam (eBeam) inactivation of pathogens is a commercially proven technology in multiple industries. While commonly used in a variety of decontamination processes, this technology can be considered relatively new to the pharmaceutical industry. Rotavirus is the leading cause of severe gastroenteritis among infants, children, and at-risk adults. Infections are more severe in developing countries where access to health care, clean food, and water is limited. Passive immunization using orally administered egg yolk antibodies (chicken IgY) is proven for prophylaxis and therapy of viral diarrhea, owing to the stability of avian IgY in the harsh gut environment. Since preservation of viral antigenicity is critical for successful antibody production, the aim of this study was to demonstrate the effective use of electron beam irradiation as a method of pathogen inactivation to produce rotavirus-specific neutralizing egg yolk antibodies. White leghorn hens were immunized with the eBeam-inactivated viruses every 2 weeks until serum antibody titers peaked. The relative antigenicity of eBeam-inactivated Wa G1P[8] human rotavirus (HRV) was compared to live virus, thermally, and chemically inactivated virus preparations. Using a sandwich ELISA (with antibodies against recombinant VP8 for capture and detection of HRV), the live virus was as expected, most immunoreactive. The eBeam-inactivated HRV's antigenicity was better preserved when compared to thermally and chemically inactivated viruses. Additionally, both egg yolk antibodies and serum-derived IgY were effective at neutralizing HRV in vitro. Electron beam inactivation is a suitable method for the inactivation of HRV and other enteric viruses for use in both passive and active immunization strategies.


Asunto(s)
Rotavirus , Animales , Anticuerpos Neutralizantes , Antígenos Virales , Pollos , Yema de Huevo , Electrones , Femenino , Frecuencia Cardíaca , Humanos
3.
Elife ; 112022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35587649

RESUMEN

The phagocytosis and destruction of pathogens in lysosomes constitute central elements of innate immune defense. Here, we show that Brucella, the causative agent of brucellosis, the most prevalent bacterial zoonosis globally, subverts this immune defense pathway by activating regulated IRE1α-dependent decay (RIDD) of Bloc1s1 mRNA encoding BLOS1, a protein that promotes endosome-lysosome fusion. RIDD-deficient cells and mice harboring a RIDD-incompetent variant of IRE1α were resistant to infection. Inactivation of the Bloc1s1 gene impaired the ability to assemble BLOC-1-related complex (BORC), resulting in differential recruitment of BORC-related lysosome trafficking components, perinuclear trafficking of Brucella-containing vacuoles (BCVs), and enhanced susceptibility to infection. The RIDD-resistant Bloc1s1 variant maintains the integrity of BORC and a higher-level association of BORC-related components that promote centrifugal lysosome trafficking, resulting in enhanced BCV peripheral trafficking and lysosomal destruction, and resistance to infection. These findings demonstrate that host RIDD activity on BLOS1 regulates Brucella intracellular parasitism by disrupting BORC-directed lysosomal trafficking. Notably, coronavirus murine hepatitis virus also subverted the RIDD-BLOS1 axis to promote intracellular replication. Our work establishes BLOS1 as a novel immune defense factor whose activity is hijacked by diverse pathogens.


Asunto(s)
Brucella , Brucelosis , Animales , Brucelosis/metabolismo , Brucelosis/microbiología , Endorribonucleasas/metabolismo , Endosomas/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA