Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Environ Manage ; 358: 120784, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38603847

RESUMEN

Nowadays, biomarkers are recognized as valuable tools to complement chemical and ecological assessments in biomonitoring programs. They provide insights into the effects of contaminant exposures on individuals and establish connections between environmental pressure and biological response at higher levels. In the last decade, strong improvements in the design of experimental protocols and the result interpretation facilitated the use of biomarker across wide geographical areas, including aquatic continua. Notably, the statistical establishment of reference values and thresholds enabled the discrimination of contamination effects in environmental conditions, allowed interspecies comparisons, and eliminated the need of a reference site. The aim of this work was to study freshwater-estuarine-coastal water continua by applying biomarker measurements in multi-species caged organisms. During two campaigns, eight sentinel species, encompassing fish, mollusks, and crustaceans, were deployed to cover 25 sites from rivers to the sea. As much as possible, a common methodology was employed for biomarker measurements (DNA damage and phagocytosis efficiency) and data interpretation based on guidelines established using reference values and induction/inhibition thresholds (establishment of three effect levels). The methodology was successfully implemented and allowed us to assess the environmental quality. Employing multiple species per site enhances confidence in observed trends. The results highlight the feasibility of integrating biomarker-based environmental monitoring programs across a continuum scale. Biomarker results align with Water Framework Directive indicators in cases of poor site quality. Additionally, when discrepancies arise between chemical and ecological statuses, biomarker findings offer a comprehensive perspective to elucidate the disparities. Presented as a pilot project, this work contributes to gain insights into current biomonitoring needs, providing new questions and perspectives.


Asunto(s)
Biomarcadores , Monitoreo del Ambiente , Especies Centinela , Monitoreo del Ambiente/métodos , Biomarcadores/análisis , Francia , Animales , Peces
2.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35008450

RESUMEN

Aluminium (Al) is the most common natural metallic element in the Earth's crust. It is released into the environment through natural processes and human activities and accumulates in aquatic environments. This review compiles scientific data on the neurotoxicity of aluminium contamination on the nervous system of aquatic organisms. More precisely, it helps identify biomarkers of aluminium exposure for aquatic environment biomonitoring in freshwater aquatic vertebrates. Al is neurotoxic and accumulates in the nervous system of aquatic vertebrates, which is why it could be responsible for oxidative stress. In addition, it activates and inhibits antioxidant enzymes and leads to changes in acetylcholinesterase activity, neurotransmitter levels, and in the expression of several neural genes and nerve cell components. It also causes histological changes in nerve tissue, modifications of organism behaviour, and cognitive deficit. However, impacts of aluminium exposure on the early stages of aquatic vertebrate development are poorly described. Lastly, this review also poses the question of how accurate aquatic vertebrates (fishes and amphibians) could be used as model organisms to complement biological data relating to the developmental aspect. This "challenge" is very relevant since freshwater pollution with heavy metals has increased in the last few decades.


Asunto(s)
Aluminio/efectos adversos , Organismos Acuáticos/efectos de los fármacos , Contaminación Ambiental/efectos adversos , Sistema Nervioso/efectos de los fármacos , Contaminantes Químicos del Agua/efectos adversos , Animales , Agua Dulce/química , Humanos , Vertebrados/fisiología
3.
Chemosphere ; 362: 142601, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880263

RESUMEN

In response to the need for the diversification of regulatory bioassays to screen estrogen-like endocrine disrupting chemical (EEDC) in the environment, we propose the use of a reporter gene assay involving all nuclear estrogen receptors from Dicentrarchus labrax (i.e., sbEsr1, sbEsr2a, or sbEsr2b). Named DLES test (D. labrax estrogen screen), it aims at complementing existing standardized in vitro tests by implementing more estrogen receptors notably those that do not originate from humans. Positive responses were obtained with all three estrogen receptors, and-consistently with observations from other species-variations in sensitivity to E2 were measured. Sensitivity and EC50 values could be classified as follows: sbEsr2b < sbEsr2a < sbEsr1. The pharmacological characterization with a human estrogen receptor antagonist (fulvestrant) successfully validated the specific involvement of each sbEsr and evidenced the capacity of the DLES test to highlight antagonist interactions. The DLES test was applied to WWTP contaminant extracts. A positive response was detected in the inflow sample in accordance with the YES test, but not in the outflow sample. Notwithstanding, the DLES test (sbEsr2b) exhibited greater sensitivity for the screening of those samples. This study demonstrates the need for more comprehensive testing including representatives of marine species for a better detection of EEDCs. The DLES test appears as a pertinent tool to predict adverse effects and to widen the scope of screening and hazard assessment of EEDCs in the environment.


Asunto(s)
Lubina , Disruptores Endocrinos , Estrógenos , Contaminantes Químicos del Agua , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/análisis , Animales , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Estrógenos/toxicidad , Estrógenos/análisis , Receptores de Estrógenos/metabolismo , Bioensayo , Monitoreo del Ambiente/métodos , Genes Reporteros , Humanos
4.
Sci Total Environ ; 904: 166326, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37591395

RESUMEN

Recent monitoring campaigns have revealed the presence of mixtures of pesticides and their transformation products (TP) in headwater streams situated within agricultural catchments. These observations were attributed to the use of various agrochemicals in surrounding regions. The aim of this work was to compare the application of chemical and ecotoxicological tools for assessing environmental quality in relation to pesticide and TP contamination. It was achieved by deploying these methodologies in two small lentic water bodies located at the top of two agricultural catchments, each characterized by distinct agricultural practices (ALT: organic, CHA: conventional). Additionally, the results make it possible to assess the impact of contamination on fish caged in situ. Pesticides and TP were measured in water using active and passive samplers and suspended solid particles. Eighteen biomarkers (innate immune responses, oxidative stress, biotransformation, neurotoxicity, genotoxicity, and endocrine disruption) were measured in Gasterosteus aculeatus encaged in situ. More contaminants were detected in CHA, totaling 25 compared to 14 in ALT. Despite the absence of pesticide application in the ALT watershed for the past 14 years, 7 contaminants were quantified in 100 % of the water samples. Among these contaminants, 6 were TPs (notably atrazine-2-hydroxy, present at a concentration exceeding 300 ng·L-1), and 1 was a current pesticide, prosulfocarb, whose mobility should prompt more caution and new regulations to protect adjacent ecosystems and crops. Regarding the integrated biomarker response (IBRv2), caged fish was similarly impacted in ALT and CHA. Variations in biomarker responses were highlighted depending on the site, but the results did not reveal whether one site is of better quality than the other. This outcome was likely attributed to the occurrence of contaminant mixtures in both sites. The main conclusions revealed that chemical and biological tools complement each other to better assess the environmental quality of wetlands such as ponds.


Asunto(s)
Plaguicidas , Smegmamorpha , Contaminantes Químicos del Agua , Animales , Plaguicidas/toxicidad , Plaguicidas/análisis , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Agricultura , Smegmamorpha/metabolismo , Peces/metabolismo , Biomarcadores/metabolismo , Agua
5.
Environ Pollut ; 292(Pt B): 118403, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34699920

RESUMEN

More than 20 years after the Water Framework Directive was adopted, there are still major gaps in the sanitary status of small rivers and waterbodies at the head of basins. These small streams supply water to a large number of wetlands that support a rich biodiversity. Many of these waterbodies are fishponds whose production is destined for human consumption or for the restocking of other aquatic environments. However, these ecosystems are exposed to contaminants, including pesticides and their transformation products. This work aims to provide information on the distribution, diversity, and concentrations of agricultural contaminants in abiotic and biotic compartments from a fishpond located at the head of watersheds. A total of 20 pesticides and 20 transformation products were analyzed by HPLC-ESI-MS/MS in water and sediment sampled monthly throughout a fish production cycle, and in three fish species at the beginning and end of the cycle. The highest mean concentrations were found for metazachlor-OXA (519.48 ± 56.52 ng.L-1) in water and benzamide (4.23 ± 0.17 ng g-1 dry wt.) in sediment. Up to 20 contaminants were detected per water sample and 26 per sediment sample. The transformation products of atrazine (banned in Europe since 2003 but still widely used in other parts of the world), flufenacet, imidacloprid (banned in France since 2018), metazachlor, and metolachlor were more concentrated than their parent compounds. Fewer contaminants were detected in fish and principally prosulfocarb accumulated in organisms during the cycle. Our work brings innovative data on the contamination of small waterbodies located at the head of a basin. The transformation products with the highest frequency of occurrence and concentrations should be prioritized for further environmental monitoring studies, and specific toxicity thresholds should be defined. Few contaminants were found in fish, but the results challenge the widely use of prosulfocarb.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Animales , Ecosistema , Monitoreo del Ambiente , Humanos , Plaguicidas/análisis , Ríos , Espectrometría de Masas en Tándem , Agua , Contaminantes Químicos del Agua/análisis
6.
Sci Total Environ ; 788: 147715, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34020090

RESUMEN

In France, more than 90% of monitored watercourses are contaminated with pesticides. This high contamination level increases at the head of agricultural watersheds, where dilution capacities are low and transport from treated lands is direct. Ponds, numerous around headwater streams, could provide additional protection against pesticide pollution. Because of their long hydraulic residence time and large water volumes, they mitigate pesticide concentrations between upstream and downstream rivers. However, pesticide transformation products may also be responsible for the degradation of environments, owing to their presence at high concentrations and their persistence, but related data are scarce, particularly because of their high level of molecular diversity. We first reported on the state of water contamination in agricultural headwater streams, based on high frequency water sampling. Analysis of 67 molecules (HPLC-ESI-MS/MS) showed pesticides and pesticide transformation product mixtures of up to 29 different compounds in one sample. Regardless of the sampling location, transformation products represented at least 50% of the detected compounds. Then, we demonstrated the capacity of a pond to reduce contaminant concentrations in downstream rivers for 90% of the detected compounds. Upstream from this pond, environmental quality or ecotoxicological standards were exceeded during sampling, with pesticide and transformation product sum concentrations of up to 27 µg/L. Downstream from the study pond, few exceedances were observed, with a maximum total concentration of 2.2 µg/L, reflecting significant water quality improvement.

7.
Chemosphere ; 284: 131292, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34198062

RESUMEN

Monitoring pesticides in the environment requires the use of sensitive analytical methods. However, existing methods are generally not suitable for analyzing small organisms, as they require large matrix masses. This study explores the development of a miniaturized extraction protocol for the monitoring of small organisms, based on only 30 mg of matrix. The miniaturized sample preparation was developed using fish and macroinvertebrate matrices. It allowed the characterization of 41 pesticides and transformation products (log P from -1.9 to 4.8) in small samples with LC-MS/MS, based on European guidelines (European Commission DG-SANTE, 2019). Quantification limits ranged from 3 to 460 ng g-1 dry weight (dw) for fish and from 0.1 to 356 ng g-1 dw for invertebrates, with most below 60 ng g-1 dw. Extraction rates ranged from 70% to 120% for 35 molecules in fish. Recoveries ranged from 70% to 120% for 37 molecules in macroinvertebrates. Inter-day precision was below 30% for 32 molecules at quantification limits. The method was successfully applied to 17 fish and 19 macroinvertebrates collected from two ponds of the French region of Dombes in November and May 2018, respectively. Both sample matrices were nearly always contaminated with benzamide, imidacloprid-desnitro, and prosulfocarb at respective concentrations of 42-237, 3, and 30-165 ng g-1 dw in fish, and 62-438, 2-6, and 15-29 ng g-1 dw in macroinvertebrates. Results show that this method is an effective tool for characterizing polar pesticides in small biotic samples.


Asunto(s)
Residuos de Plaguicidas , Plaguicidas , Animales , Cromatografía Liquida , Miniaturización , Residuos de Plaguicidas/análisis , Plaguicidas/análisis , Extracción en Fase Sólida , Espectrometría de Masas en Tándem
8.
Environ Sci Pollut Res Int ; 27(6): 6228-6238, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31863385

RESUMEN

Fishponds are man-made shallow water bodies that are still little studied because of their small size. They represent high value ecosystems, both environmentally (biodiversity hotspot) and economically (fish production). They can have a high place on the hydrographic network, so their influence on water quality is of first importance for rivers and water bodies located downstream and monitored under the Water Framework Directive. These small water bodies can be a source of contaminants during draining period or an efficient buffer for pesticides. We wanted to evaluate whether these ponds could also be a remediation tool against metals by following the annual evolution of upstream/downstream flows. Cadmium, copper, lead and zinc concentrations were quantified in the dissolved phase upstream and downstream of three ponds, each one having a specific agricultural environment (traditional or organic). Metal concentration was quantified in sediments and water. For the dissolved phase, the predictive non-effect concentration was often exceeded, suggesting an environmental risk. Results highlighted also greater quantity of metals at the downstream of the pond compared to the upstream, suggesting remobilization into the ponds or direct cross-sectional contributions from the watershed (e.g. runoff from crops) or even remobilization. Regarding sediments, minimal contamination was shown but a high mineralogical variability. No buffer effect of ponds, which could reduce the risk of acute or chronic toxicity, was detected.


Asunto(s)
Monitoreo del Ambiente , Metales/análisis , Contaminantes Químicos del Agua/análisis , Animales , Estudios Transversales , Ecosistema , Sedimentos Geológicos , Estanques , Ríos/química
9.
Environ Sci Pollut Res Int ; 27(4): 3706-3714, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30875069

RESUMEN

Amphibians are now recognized as the most endangered group. One of this decline causes is the degradation of their habitat through direct contamination of water, soil leaching, or runoff from surrounding contaminated soils and environments. In the North of France, the extensive industrial activities resulted in massive soil contamination by metal compounds. Mineral amendments were added to soils to decrease trace metal mobility. Because of the large areas to be treated, the use of inexpensive industrial by-products was favored. Two types of fly ashes were both tested in an experimental site with the plantation of trees in 2000. Aim of the present work was to investigate the effects of extracts from metal-contaminated soils treated or not for 10 years with fly ashes on Xenopus laevis oocyte using cell biology approaches. Indeed, our previous studies have shown that the Xenopus oocyte is a relevant model to study the metal ion toxicity. Survival and maturation of oocyte exposed to the soil extracts were evaluated by phenotypic approaches and electrophysiological recordings. An extract derived from a metal-contaminated soil treated for 10 years with sulfo-calcic ashes induced the largest effects. Membrane integrity appeared affected and ion fluxes in exposed oocytes were changed. Thus, it appeared that extracted elements from certain mineral amendments used to prevent the mobility of metals in the case of highly metal-contaminated soils could have a negative impact on X. laevis oocytes.


Asunto(s)
Ceniza del Carbón/metabolismo , Metales Pesados/metabolismo , Oocitos/efectos de los fármacos , Contaminantes del Suelo/metabolismo , Suelo/química , Animales , Ciclo Celular/efectos de los fármacos , Ceniza del Carbón/química , Francia , Intoxicación por Metales Pesados , Metales Pesados/análisis , Oocitos/crecimiento & desarrollo , Oocitos/fisiología , Contaminantes del Suelo/análisis , Xenopus laevis
10.
Environ Sci Pollut Res Int ; 27(4): 3697-3705, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30835066

RESUMEN

Pesticides are often found at high concentrations in small ponds near agricultural field where amphibians are used to live and reproduce. Even if there are many studies on the impacts of phytopharmaceutical active ingredients in amphibian toxicology, only a few are interested in the earlier steps of their life cycle. While their populations are highly threatened with extinction. The aim of this work is to characterize the effects of glyphosate and its commercial formulation Roundup® GT Max on the Xenopus laevis oocyte maturation which is an essential preparation for the laying and the fertilization. Glyphosate is an extensively used herbicide, not only known for its effectiveness but also for its indirect impacts on non-target organisms. Our results showed that exposures to both forms of glyphosate delayed this hormone-dependent process and were responsible for spontaneous maturation. Severe and particular morphogenesis abnormalities of the meiotic spindle were also observed. The MAPK pathway and the MPF did not seem to be affected by exposures. The xenopus oocyte is particularly affected by the exposures and appears as a relevant model for assessing the effects of environmental contamination.


Asunto(s)
Glicina/análogos & derivados , Glicina/toxicidad , Herbicidas/toxicidad , Oocitos/efectos de los fármacos , Xenopus laevis/crecimiento & desarrollo , Animales , Xenopus laevis/metabolismo , Glifosato
11.
Cells ; 9(1)2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31963573

RESUMEN

The role of hydrogen sulfide (H2S) is addressed in Xenopuslaevis oocytes. Three enzymes involved in H2S metabolism, cystathionine ß-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase, were detected in prophase I and metaphase II-arrested oocytes and drove an acceleration of oocyte meiosis resumption when inhibited. Moreover, meiosis resumption is associated with a significant decrease in endogenous H2S. On another hand, a dose-dependent inhibition was obtained using the H2S donor, NaHS (1 and 5 mM). NaHS impaired translation. NaHS did not induce the dissociation of the components of the M-phase promoting factor (MPF), cyclin B and Cdk1, nor directly impacted the MPF activity. However, the M-phase entry induced by microinjection of metaphase II MPF-containing cytoplasm was diminished, suggesting upstream components of the MPF auto-amplification loop were sensitive to H2S. Superoxide dismutase and catalase hindered the effects of NaHS, and this sensitivity was partially dependent on the production of reactive oxygen species (ROS). In contrast to other species, no apoptosis was promoted. These results suggest a contribution of H2S signaling in the timing of amphibian oocytes meiosis resumption.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Factor Promotor de Maduración/metabolismo , Meiosis/efectos de los fármacos , Oocitos/metabolismo , Sulfuros/farmacología , Animales , Apoptosis/efectos de los fármacos , Catalasa/metabolismo , Proteínas de Ciclo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Ciclina B/metabolismo , Cistationina betasintasa/antagonistas & inhibidores , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/antagonistas & inhibidores , Cistationina gamma-Liasa/metabolismo , Citoplasma/metabolismo , Femenino , Profase Meiótica I/efectos de los fármacos , Metafase/efectos de los fármacos , Oocitos/química , Oocitos/enzimología , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Sulfuros/metabolismo , Sulfurtransferasas/antagonistas & inhibidores , Sulfurtransferasas/metabolismo , Superóxido Dismutasa/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis , Fosfatasas cdc25/metabolismo
12.
J Chromatogr A ; 1628: 461447, 2020 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-32822986

RESUMEN

Waterfowl populations have been decreasing in Europe for the last years and pollution appears to be one of the main factors. This study was conducted to develop a single sensitive and robust analytical method for the monitoring of 2 fungicides, 15 herbicides, 3 insecticides and 24 transformation products in wild bird eggs. One of the major challenges addressed was the characterization of chemicals with large logP range (from -1.9 to 4.8). A total of 11 different extraction parameters were tested in triplicate to optimize the extraction protocol, on generic parameters, buffer addition and use of clean-up steps. Quantification was based on matrix-match approach with hen eggs as reference matrix (34 analytes with r²>0.99). Particular attention was payed to matrix effects (-28% on average), quantification limits (0.5 to 25 ng.g-1 dry mass / 0.2 to 7.5 ng.g-1 fresh mass) and extraction yields (46 to 87% with 25 analytes up to 70%) to ensure the relevance of the method and its compatibility with ultra-trace analysis. It led to a simple solid/liquid low temperature partitioning extraction method followed by LC-MS/MS. Analysis of 29 field samples from 3 waterfowl species revealed that eggs were slightly contaminated with pesticides as only one egg presented a contamination (terbutryn, herbicide, 0.7 ng.g-1) and confirmed the relevance of the method.


Asunto(s)
Técnicas de Química Analítica/métodos , Cromatografía Liquida , Huevos/análisis , Plaguicidas/análisis , Espectrometría de Masas en Tándem , Animales , Aves , Contaminantes Ambientales/análisis , Europa (Continente) , Plaguicidas/química
13.
Environ Pollut ; 248: 478-495, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30831345

RESUMEN

Environmental contamination is one of the major factors or cofactors affecting amphibian populations. Since 2000, the number of studies conducted in laboratory conditions to understand impacts of chemical exposures increased. They aimed to characterize biological effects on amphibians. This review proposes an overview of biological responses reported after exposures to metals, phytopharmaceuticals or emerging organic contaminants and focuses on endpoints relating to reproduction and development. Due to amphibian peculiar features, these periods of their life cycle are especially critical to pollutant exposures. Despite the large range of tested compounds, the same model species are often used as biological models and morphological alterations are the most studied observations. From the results, the laboratory-to-field extrapolation remained uneasy and exposure designs have to be more elaborated to be closer to environmental conditions. Few studies proposed such experimental approaches. Lastly, gametes, embryos and larvae constitute key stages of amphibian life cycle that can be harmed by exposures to freshwater pollutants. Specific efforts have to be intensified on the earliest stages and notably germ cells.


Asunto(s)
Anfibios/embriología , Contaminantes Ambientales/toxicidad , Contaminación Ambiental/efectos adversos , Larva/efectos de los fármacos , Estadios del Ciclo de Vida/efectos de los fármacos , Reproducción/efectos de los fármacos , Animales , Compuestos Orgánicos/toxicidad , Preparaciones Farmacéuticas/análisis
14.
Aquat Toxicol ; 193: 105-110, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29053961

RESUMEN

Since amphibians are recognised as good models to assess the quality of environments, only few studies have dealt with the impacts of chemical contaminants on their gametes, while toxic effects at this stage will alter all the next steps of their life cycle. Therefore, we propose to investigate the oocyte maturation of Xenopus laevis in cadmium- and lead-contaminated conditions. The impacts of cadmium and lead ions were explored on events involved in the hormone-dependent process of maturation. In time-course experiments, cadmium, at the highest concentration, delayed and prevented the germinal vesicle breakdown. Even in the absence of progesterone this ion could also induce it. No such spontaneous maturation was observed after lead exposures. An acceleration of the process at the highest tested concentration of lead (90µM), in presence of progesterone, was recorded. Cytological observations highlighted that cadmium exposures drove severe disturbances of meiotic spindle morphogenesis. At last, cadmium exposures altered the MAPK pathway, regarding the activation of ERK2 and RSK, but also the activation and the activity of the MPF, by disturbing the state of phosphorylation of Cdc2 and histone H3. Xenopus laevis oocytes were affected by these metal ion exposures, notably by Cd2+. Signatures of these metal exposures on the oocyte maturation were detected. This germ cell appeared to be a relevant model to assess the effects of environmental contaminants such as metals.


Asunto(s)
Cadmio/toxicidad , Plomo/toxicidad , Oocitos/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Cationes Bivalentes , Femenino , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Factor Promotor de Maduración/metabolismo , Meiosis , Oocitos/fisiología , Fosforilación , Progesterona/metabolismo , Huso Acromático/efectos de los fármacos , Xenopus laevis
15.
Aquat Toxicol ; 177: 1-7, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27218424

RESUMEN

Among the toxicological and ecotoxicological studies, few have investigated the effects on germ cells, gametes or embryos, while an impact at these stages will result in serious damage at a population level. Thus, it appeared essential to characterize consequences of environmental contaminant exposures at these stages. Therefore, we proposed to assess the effects of exposure to cadmium and lead ions, alone or in a binary mixture, on early stages of Xenopus laevis life cycle. Fertilization and cell division during segmentation were the studied endpoints. Cadmium ion exposures decreased in the fertilization rates in a concentration-dependent manner, targeting mainly the oocytes. Exposure to this metal ions induced also delays or blockages in the embryonic development. For lead ion exposure, no such effect was observed. For the exposure to the mixture of the two metal ions, concerning the fertilization success, we observed results similar to those obtained with the highest cadmium ion concentration.


Asunto(s)
Cadmio/toxicidad , Desarrollo Embrionario/efectos de los fármacos , Fertilización/efectos de los fármacos , Xenopus laevis/fisiología , Animales , Células Germinativas/efectos de los fármacos , Oocitos/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Xenopus laevis/embriología
16.
Toxicol In Vitro ; 29(5): 1124-31, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25957907

RESUMEN

Few studies have been conducted using Xenopus laevis germ cells as oocytes, though these cells offer many advantages allowing both electrophysiological studies and morphological examination. Our aim was to investigate the effects of metal (cadmium, lead, cobalt and zinc) exposures using cell biology approaches. First, cell survival was evaluated with both phenotypical and electrophysiological approaches. Secondly, the effect of metals on oocyte maturation was assessed with morphological observations and electrophysiological recordings. From survival experiments, our results showed that metal chlorides did not affect cell morphology but strongly depolarized X. laevis oocyte resting potential. In addition, cadmium chloride was able to inhibit progesterone-induced oocyte maturation. By contrast, zinc, but also to a lesser extent cadmium, cobalt and lead, were able to enhance spontaneous oocyte maturation in the absence of progesterone stimulation. Finally, electrophysiological recordings revealed that some metal chlorides (lead, cadmium) exposures could disturb calcium signaling in X. laevis oocyte by modifying calcium-activated chloride currents. Our results demonstrated the high sensitivity of X. laevis oocytes toward exogenous metals such as lead and cadmium. In addition, the cellular events recorded might have a predictive value of effects occurring later on the ability of oocytes to be fertilized. Together, these results suggest a potential use of this cellular lab model as a tool for ecotoxicological assessment of contaminated fresh waters.


Asunto(s)
Cloruros/toxicidad , Metales Pesados/toxicidad , Oocitos/efectos de los fármacos , Animales , Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Oocitos/citología , Oocitos/fisiología , Progesterona/farmacología , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA