Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
IEEE Trans Robot ; 35(5): 1123-1135, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31607833

RESUMEN

The navigation of magnetic medical robots typically relies on localizing an actuated, intracorporeal, ferromagnetic body and back-computing a necessary field and gradient that would result in a desired wrench on the device. Uncertainty in this localization degrades the precision of force transmission. Reducing applied force uncertainty may enhance tasks such as in-vivo navigation of miniature robots, actuation of magnetically guided catheters, tissue palpation, as well as simply ensuring a bound on forces applied on sensitive tissue. In this paper, we analyzed the effects of localization noise on force uncertainty by using sensitivity ellipsoids of the magnetic force Jacobian and introduced an algorithm for uncertainty reduction. We validated the algorithm in both a simulation study and in a physical experiment. In simulation, we observed reductions in estimated force uncertainty by factors of up to 2.8 and 3.1 when using one and two actuating magnets, respectively. On a physical platform, we demonstrated a force uncertainty reduction by a factor of up to 2.5 as measured using an external sensor. Being the first consideration of force uncertainty resulting from noisy localization, this work provides a strategy for investigators to minimize uncertainty in magnetic force transmission.

2.
Int J Rob Res ; 37(8): 890-911, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30150847

RESUMEN

Pose estimation methods for robotically guided magnetic actuation of capsule endoscopes have recently enabled trajectory following and automation of repetitive endoscopic maneuvers. However, these methods face significant challenges in their path to clinical adoption including the presence of regions of magnetic field singularity, where the accuracy of the system degrades, and the need for accurate initialization of the capsule's pose. In particular, the singularity problem exists for any pose estimation method that utilizes a single source of magnetic field if the method does not rely on the motion of the magnet to obtain multiple measurements from different vantage points. We analyze the workspace of such pose estimation methods with the use of the point-dipole magnetic field model and show that singular regions exist in areas where the capsule is nominally located during magnetic actuation. Since the dipole model can approximate most magnetic field sources, the problem discussed herein pertains to a wider set of pose estimation techniques. We then propose a novel hybrid approach employing static and time-varying magnetic field sources and show that this system has no regions of singularity. The proposed system was experimentally validated for accuracy, workspace size, update rate and performance in regions of magnetic singularity. The system performed as well or better than prior pose estimation methods without requiring accurate initialization and was robust to magnetic singularity. Experimental demonstration of closed-loop control of a tethered magnetic device utilizing the developed pose estimation technique is provided to ascertain its suitability for robotically guided capsule endoscopy. Hence, advances in closed-loop control and intelligent automation of magnetically actuated capsule endoscopes can be further pursued toward clinical realization by employing this pose estimation system.

3.
Tech Gastrointest Endosc ; 17(1): 40-46, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26028956

RESUMEN

Capsule endoscopy (CE) has transformed from a research venture into a widely used clinical tool and the primary means for diagnosing small bowel pathology. These orally administered capsules traverse passively through the gastrointestinal tract via peristalsis and are used in the esophagus, stomach, small bowel, and colon. The primary focus of CE research in recent years has been enabling active CE manipulation and extension of the technology to therapeutic functionality; thus, widening the scope of the procedure. This review outlines clinical standards of the technology as well as recent advances in CE research. Clinical capsule applications are discussed with respect to each portion of the gastrointestinal tract. Promising research efforts are presented with an emphasis on enabling active capsule locomotion. The presented studies suggest, in particular, that the most viable solution for active capsule manipulation is actuation of a capsule via exterior permanent magnet held by a robot. Developing capsule procedures adhering to current healthcare standards, such as enabling a tool channel or irrigation in a therapeutic device, is a vital phase in the adaptation of CE in the clinical setting.

5.
IEEE Robot Autom Lett ; 4(4): 3371-3377, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31341948

RESUMEN

Traditional endoscopes consist of a flexible body and a steerable tip with therapeutic capability. Although prior endoscopes have relied on operator pushing for actuation, recent robotic concepts have relied on the application of a tip force for guidance. In such case, the body of the endoscope can be passive and compliant; however, the body can have significant effect on mechanics of motion and may require modeling. As the endoscope body's shape is often unknown, we have developed an estimation method to recover the approximate distal shape, local to the endoscope's tip, where the tip position and orientation are the only sensed parameters in the system. We leverage a planar dynamic model and extended Kalman filter to obtain a constant-curvature shape estimate of a magnetically guided endoscope. We validated this estimator in both dynamic simulations and on a physical platform. We then used this estimate in a feed-forward control scheme and demonstrated improved trajectory following. This methodology can enable the use of inverse-dynamic control for the tip-based actuation of an endoscope, without the need for shape sensing.

6.
Sci Robot ; 4(31)2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31380501

RESUMEN

Diagnostic endoscopy in the gastrointestinal tract has remained largely unchanged for decades and is limited to the visualization of the tissue surface, the collection of biopsy samples for diagnoses, and minor interventions such as clipping or tissue removal. In this work, we present the autonomous servoing of a magnetic capsule robot for in-situ, subsurface diagnostics of microanatomy. We investigated and showed the feasibility of closed-loop magnetic control using digitized microultrasound (µUS) feedback; this is crucial for obtaining robust imaging in an unknown and unconstrained environment. We demonstrated the functionality of an autonomous servoing algorithm that uses µUS feedback, both on benchtop trials as well as in-vivo in a porcine model. We have validated this magnetic-µUS servoing in instances of autonomous linear probe motion and were able to locate markers in an agar phantom with 1.0 ± 0.9 mm position accuracy using a fusion of robot localization and µUS image information. This work demonstrates the feasibility of closed-loop robotic µUS imaging in the bowel without the need for either a rigid physical link between the transducer and extracorporeal tools or complex manual manipulation.

7.
IEEE Robot Autom Lett ; 2(3): 1352-1359, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28289703

RESUMEN

Retroflexion during colonoscopy is typically only practiced in the wider proximal and distal ends of the large intestine owing to the stiff nature of the colonoscope. This inability to examine the proximal side of the majority of colon folds contributes to today's suboptimal colorectal cancer detection rates. We have developed an algorithm for autonomous retroflexion of a flexible endoscope that is actuated magnetically from the tip. The magnetic wrench applied on the tip of the endoscope is optimized in real-time with data from pose detection to compute motions of the actuating magnet. This is the first example of a completely autonomous maneuver by a magnetic endoscope for exploration of the gastrointestinal tract. The proposed approach was validated in plastic tubes of various diameters with a success rate of 98.8% for separation distances up to 50 mm. Additionally, a set of trials was conducted in an excised porcine colon observing a success rate of 100% with a mean time of 19.7 s. In terms of clinical safety, the maximum stress that is applied on the colon wall with our methodology is an order of magnitude below what would damage tissue.

8.
Robot Sci Syst ; 20162016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28286886

RESUMEN

Magnetic field gradients have repeatedly been shown to be the most feasible mechanism for gastrointestinal capsule endoscope actuation. An inverse quartic magnetic force variation with distance results in large force gradients induced by small movements of a driving magnet; this necessitates robotic actuation of magnets to implement stable control of the device. A typical system consists of a serial robot with a permanent magnet at its end effector that actuates a capsule with an embedded permanent magnet. We present a tethered capsule system where a capsule with an embedded magnet is closed loop controlled in 2 degree-of-freedom in position and 2 degree-of-freedom in orientation. Capitalizing on the magnetic field of the external driving permanent magnet, the capsule is localized in 6-D allowing for both position and orientation feedback to be used in a control scheme. We developed a relationship between the serial robot's joint parameters and the magnetic force and torque that is exerted onto the capsule. Our methodology was validated both in a dynamic simulation environment where a custom plug-in for magnetic interaction was written, as well as on an experimental platform. The tethered capsule was demonstrated to follow desired trajectories in both position and orientation with accuracy that is acceptable for colonoscopy.

9.
Rep U S ; 2016: 1139-1144, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28316873

RESUMEN

In this paper, we demonstrate velocity-level closed-loop control of a tethered magnetic capsule endoscope that is actuated via serial manipulator with a permanent magnet at its end-effector. Closed-loop control (2 degrees-of-freedom in position, and 2 in orientation) is made possible with the use of a real-time magnetic localization algorithm that utilizes the actuating magnetic field and thus does not require additional hardware. Velocity control is implemented to create smooth motion that is clinically necessary for colorectal cancer diagnostics. Our control algorithm generates a spline that passes through a set of input points that roughly defines the shape of the desired trajectory. The velocity controller acts in the tangential direction to the path, while a secondary position controller enforces a nonholonomic constraint on capsule motion. A soft nonholonomic constraint is naturally imposed by the lumen while we enforce a strict constraint for both more accurate estimation of tether disturbance and hypothesized intuitiveness for a clinician's teleoperation. An integrating disturbance force estimation control term is introduced to predict the disturbance of the tether. This paper presents the theoretical formulations and experimental validation of our methodology. Results show the system's ability to achieve a repeatable velocity step response with low steady-state error as well as ability of the tethered capsule to maneuver around a bend.

10.
World J Gastroenterol ; 21(37): 10528-41, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26457013

RESUMEN

Capsule endoscopes have evolved from passively moving diagnostic devices to actively moving systems with potential therapeutic capability. In this review, we will discuss the state of the art, define the current shortcomings of capsule endoscopy, and address research areas that aim to overcome said shortcomings. Developments in capsule mobility schemes are emphasized in this text, with magnetic actuation being the most promising endeavor. Research groups are working to integrate sensor data and fuse it with robotic control to outperform today's standard invasive procedures, but in a less intrusive manner. With recent advances in areas such as mobility, drug delivery, and therapeutics, we foresee a translation of interventional capsule technology from the bench-top to the clinical setting within the next 10 years.


Asunto(s)
Endoscopía Capsular/métodos , Animales , Endoscopios en Cápsulas , Sistemas de Liberación de Medicamentos , Diseño de Equipo , Humanos , Magnetismo , Peristaltismo , Robótica , Grabación en Video
11.
J Med Eng Technol ; 39(1): 54-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25367667

RESUMEN

This work describes the development and validation of a novel device which simulates important forces experienced by Robotic Capsule Endoscopes (RCE) in vivo in the small intestine. The purpose of the device is to expedite and lower the cost of RCE development. Currently, there is no accurate in vitro test method nor apparatus to validate new RCE designs; therefore, RCEs are tested in vivo at a cost of ∼$1400 per swine test. The authors have developed an in vitro RCE testing device which generates two peristaltic waves to accurately simulate the two biomechanical actions of the human small intestine that are most relevant to RCE locomotion: traction force and contact force. The device was successfully calibrated to match human physiological ranges for traction force (4-40 gf), contact force (80-500 gf) and peristaltic wave propagation speed (0.08-2 cm s(-1)) for a common RCE capsule geometry of 3.5 cm length and 1.5 cm diameter.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Ingeniería Biomédica/instrumentación , Endoscopios en Cápsulas/normas , Intestino Delgado/fisiología , Modelos Biológicos , Diseño de Equipo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA