RESUMEN
BACKGROUND: Ultrasonound is used to identify anatomical structures during regional anaesthesia and to guide needle insertion and injection of local anaesthetic. ScanNav Anatomy Peripheral Nerve Block (Intelligent Ultrasound, Cardiff, UK) is an artificial intelligence-based device that produces a colour overlay on real-time B-mode ultrasound to highlight anatomical structures of interest. We evaluated the accuracy of the artificial-intelligence colour overlay and its perceived influence on risk of adverse events or block failure. METHODS: Ultrasound-guided regional anaesthesia experts acquired 720 videos from 40 volunteers (across nine anatomical regions) without using the device. The artificial-intelligence colour overlay was subsequently applied. Three more experts independently reviewed each video (with the original unmodified video) to assess accuracy of the colour overlay in relation to key anatomical structures (true positive/negative and false positive/negative) and the potential for highlighting to modify perceived risk of adverse events (needle trauma to nerves, arteries, pleura, and peritoneum) or block failure. RESULTS: The artificial-intelligence models identified the structure of interest in 93.5% of cases (1519/1624), with a false-negative rate of 3.0% (48/1624) and a false-positive rate of 3.5% (57/1624). Highlighting was judged to reduce the risk of unwanted needle trauma to nerves, arteries, pleura, and peritoneum in 62.9-86.4% of cases (302/480 to 345/400), and to increase the risk in 0.0-1.7% (0/160 to 8/480). Risk of block failure was reported to be reduced in 81.3% of scans (585/720) and to be increased in 1.8% (13/720). CONCLUSIONS: Artificial intelligence-based devices can potentially aid image acquisition and interpretation in ultrasound-guided regional anaesthesia. Further studies are necessary to demonstrate their effectiveness in supporting training and clinical practice. CLINICAL TRIAL REGISTRATION: NCT04906018.
Asunto(s)
Anestesia de Conducción , Bloqueo Nervioso , Humanos , Bloqueo Nervioso/métodos , Inteligencia Artificial , Ultrasonografía Intervencional/métodos , Anestesia de Conducción/métodos , UltrasonografíaRESUMEN
BACKGROUND: Ultrasound-guided regional anaesthesia relies on the visualisation of key landmark, target, and safety structures on ultrasound. However, this can be challenging, particularly for inexperienced practitioners. Artificial intelligence (AI) is increasingly being applied to medical image interpretation, including ultrasound. In this exploratory study, we evaluated ultrasound scanning performance by non-experts in ultrasound-guided regional anaesthesia, with and without the use of an assistive AI device. METHODS: Twenty-one anaesthetists, all non-experts in ultrasound-guided regional anaesthesia, underwent a standardised teaching session in ultrasound scanning for six peripheral nerve blocks. All then performed a scan for each block; half of the scans were performed with AI assistance and half without. Experts assessed acquisition of the correct block view and correct identification of sono-anatomical structures on each view. Participants reported scan confidence, experts provided a global rating score of scan performance, and scans were timed. RESULTS: Experts assessed 126 ultrasound scans. Participants acquired the correct block view in 56/62 (90.3%) scans with the device compared with 47/62 (75.1%) without (P=0.031, two data points lost). Correct identification of sono-anatomical structures on the view was 188/212 (88.8%) with the device compared with 161/208 (77.4%) without (P=0.002). There was no significant overall difference in participant confidence, expert global performance score, or scan time. CONCLUSIONS: Use of an assistive AI device was associated with improved ultrasound image acquisition and interpretation. Such technology holds potential to augment performance of ultrasound scanning for regional anaesthesia by non-experts, potentially expanding patient access to these techniques. CLINICAL TRIAL REGISTRATION: NCT05156099.