Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 78(3): 539-553.e8, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32213323

RESUMEN

Whereas folding of genomes at the large scale of epigenomic compartments and topologically associating domains (TADs) is now relatively well understood, how chromatin is folded at finer scales remains largely unexplored in mammals. Here, we overcome some limitations of conventional 3C-based methods by using high-resolution Micro-C to probe links between 3D genome organization and transcriptional regulation in mouse stem cells. Combinatorial binding of transcription factors, cofactors, and chromatin modifiers spatially segregates TAD regions into various finer-scale structures with distinct regulatory features including stripes, dots, and domains linking promoters-to-promoters (P-P) or enhancers-to-promoters (E-P) and bundle contacts between Polycomb regions. E-P stripes extending from the edge of domains predominantly link co-expressed loci, often in the absence of CTCF and cohesin occupancy. Acute inhibition of transcription disrupts these gene-related folding features without altering higher-order chromatin structures. Our study uncovers previously obscured finer-scale genome organization, establishing functional links between chromatin folding and gene regulation.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Cromatina/química , Cromatina/metabolismo , Transcripción Genética , Animales , Factor de Unión a CCCTC/genética , Cromatina/genética , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Células Madre Embrionarias/fisiología , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Componentes Genómicos , Ratones , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Methods Mol Biol ; 2532: 51-71, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35867245

RESUMEN

3D genome mapping aims at connecting the physics of chromatin folding to the underlying biological events, and applications of various chromosomal conformation capture (3C) assays continue to discover critical roles of genome folding in regulating nuclear functions. To interrogate the full spectrum of chromatin folding ranging from the level of nucleosomes to full chromosomes in mammals, we developed an enhanced 3C-based method called Micro-C. The protocol employs Micrococcal nuclease (MNase) to fragment the genome, which overcomes the resolution limit of restriction enzyme-based methods, enabling the estimation of contact frequencies between proximal nucleosomes. Such improvements successfully resolve the fine-scale level of chromatin folding, including enhancer-promoter or promoter-promoter interactions, genic and nucleosomal folding, and boost the signal-to-noise ratio in detecting loops and substructures underlying TADs. In this chapter, we will thoroughly discuss the details of the Micro-C protocol and critical parameters to consider for generating high-quality Micro-C maps.


Asunto(s)
Genoma , Nucleosomas , Animales , Cromatina/genética , Mapeo Cromosómico/métodos , Mamíferos/genética , Nucleasa Microcócica , Nucleosomas/genética
3.
Nat Genet ; 54(12): 1919-1932, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36471071

RESUMEN

It remains unclear why acute depletion of CTCF (CCCTC-binding factor) and cohesin only marginally affects expression of most genes despite substantially perturbing three-dimensional (3D) genome folding at the level of domains and structural loops. To address this conundrum, we used high-resolution Micro-C and nascent transcript profiling in mouse embryonic stem cells. We find that enhancer-promoter (E-P) interactions are largely insensitive to acute (3-h) depletion of CTCF, cohesin or WAPL. YY1 has been proposed as a structural regulator of E-P loops, but acute YY1 depletion also had minimal effects on E-P loops, transcription and 3D genome folding. Strikingly, live-cell, single-molecule imaging revealed that cohesin depletion reduced transcription factor (TF) binding to chromatin. Thus, although CTCF, cohesin, WAPL or YY1 is not required for the short-term maintenance of most E-P interactions and gene expression, our results suggest that cohesin may facilitate TFs to search for and bind their targets more efficiently.


Asunto(s)
Proteínas , Animales , Ratones , Factor de Unión a CCCTC/genética , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA