Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Endocr Res ; 38(3): 139-150, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23102272

RESUMEN

AIM: To test the transactivation domain-mediated control of glucose homeostasis by the tumor suppressor p53. BACKGROUND: The tumor suppressor p53 has a critical role in maintenance of glucose homeostasis. Phosphorylation of Ser18 in the transaction domain of p53 controls the expression of Zpf385a, a zinc finger protein that regulates adipogenesis and adipose function. This results suggest that the transactivation domain of p53 is essential to the control of glucose homeostasis. MATERIALS AND METHODS: Mice with mutations in the p53 transactivation domain were examined for glucose homeostasis as well as various metabolic parameters. Glucose tolerance and insulin tolerance tests were performed on age matched wild type and mutant animals. In addition, mice expressing increased dosage of p53 were also examined. RESULTS: Mice with a mutation in p53Ser18 exhibit reduced Zpf385a expression in adipose tissue, adipose tissue-specific insulin resistance, and glucose intolerance. Mice with relative deficits in the transactivation domain of p53 exhibit similar defects in glucose homeostasis, while "Super p53" mice with an increased dosage of p53 exhibit improved glucose tolerance. CONCLUSION: These data support the role of an ATM-p53 cellular stress axis that helps combat glucose intolerance and insulin resistance and regulates glucose homeostasis.

2.
J Immunol ; 184(11): 6177-87, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20483782

RESUMEN

Ig class switch recombination (CSR) occurs in activated mature B cells, and causes an exchange of the IgM isotype for IgG, IgE, or IgA isotypes, which increases the effectiveness of the humoral immune response. DNA ds breaks in recombining switch (S) regions, where CSR occurs, are required for recombination. Activation-induced cytidine deaminase initiates DNA ds break formation by deamination of cytosines in S regions. This reaction requires reactive oxygen species (ROS) intermediates, such as hydroxyl radicals. In this study we show that the ROS scavenger N-acetylcysteine inhibits CSR. We also demonstrate that IFN-gamma treatment, which is used to induce IgG2a switching, increases intracellular ROS levels, and activates p53 in switching B cells, and show that p53 inhibits IgG2a class switching through its antioxidant-regulating function. Finally, we show that p53 inhibits DNA breaks and mutations in S regions in B cells undergoing CSR, suggesting that p53 inhibits the activity of activation-induced cytidine deaminase.


Asunto(s)
Antioxidantes/metabolismo , Cambio de Clase de Inmunoglobulina/genética , Inmunoglobulina G/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Western Blotting , Separación Celular , Citidina Desaminasa/metabolismo , Roturas del ADN de Doble Cadena , Citometría de Flujo , Inmunoglobulina G/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína p53 Supresora de Tumor/inmunología
3.
Transgenic Res ; 20(4): 899-912, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21127973

RESUMEN

p53 is a major suppressor of human malignancy. The protein levels and activity are tightly regulated in cells. Early experiments identified nuclear localization signal 1 (NLS1) as a regulator of p53 localization. We have generated mice bearing a mutation in p53 ( NLS1 ), designated p53 ( NLS1 ). Our experiments confirm a role for NLS1 in regulating p53 function. Murine embryonic fibroblasts generated from homozygous p53 ( NLS1 ) animals are partially defective in cell cycle arrest and do not respond to inhibitory signals from oncogenic Ras. In addition, p53-dependent apoptosis is abrogated in thymocytes. Contrary to predicted results, fibroblasts from homozygous p53 ( NLS1 ) animals have a greater rate of proliferation than p53-null cells. In addition, p53 ( NLS1 ) cells are more resistant to UV-induced death. Surprisingly, the homozygous p53 ( NLS1 ) animals exhibit embryonic and peri-natal lethality, with a significant portion of the animals developing exencephaly. Thus, p53 ( NLS1/NLS1 ) embryos exhibit a reduced viability relative to p53-null mice. These studies indicate that the NLS1 is a major regulator of p53 activity in vivo.


Asunto(s)
Defectos del Tubo Neural/genética , Señales de Localización Nuclear/genética , Proteína p53 Supresora de Tumor/genética , Animales , Animales Modificados Genéticamente , Apoptosis , Ciclo Celular/genética , Proliferación Celular , Supervivencia Celular/genética , Células Cultivadas , Fibroblastos/efectos de la radiación , Genes Letales/genética , Genes ras/genética , Homocigoto , Ratones , Ratones Endogámicos C57BL , Señales de Localización Nuclear/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Rayos Ultravioleta
4.
Mol Cell Biol ; 24(3): 976-84, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14729946

RESUMEN

The p53 protein acts a tumor suppressor by inducing cell cycle arrest and apoptosis in response to DNA damage or oncogene activation. Recently, it has been proposed that phosphorylation of serine 15 in human p53 by ATM (mutated in ataxia telangiectasia) kinase induces p53 activity by interfering with the Mdm2-p53 complex formation and inhibiting Mdm2-mediated destabilization of p53. Serine 18 in murine p53 has been implicated in mediating an ATM- and ataxia telangiectasia-related kinase-dependent growth arrest. To explore further the physiological significance of phosphorylation of p53 on Ser18, we generated mice bearing a serine-to-alanine mutation in p53. Analysis of apoptosis in thymocytes and splenocytes following DNA damage revealed that phosphorylation of serine 18 was required for robust p53-mediated apoptosis. Surprisingly, p53Ser18 phosphorylation did not alter the proliferation rate of embryonic fibroblasts or the p53-mediated G(1) arrest induced by DNA damage. In addition, endogenous basal levels and DNA damage-induced levels of p53 were not affected by p53Ser18 phosphorylation. p53Ala18 mice developed normally and were not susceptible to spontaneous tumorigenesis, and the reduced apoptotic function of p53Ala18 did not rescue the embryo-lethal phenotype of Mdm2-null mice. These results indicate that phosphorylation of the ATM target site on p53 specifically regulates p53 apoptotic function and further reveal that phosphorylation of p53 serine 18 is not required for p53-mediated tumor suppression.


Asunto(s)
Proteínas Nucleares , Serina/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/fisiología , Fibroblastos/metabolismo , Ratones , Fosforilación , Fosfotransferasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2 , Análisis de Secuencia de ADN , Factores de Tiempo , Proteína p53 Supresora de Tumor/genética
5.
Oncogene ; 23(1): 303-6, 2004 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-14712235

RESUMEN

Mdm4 (MdmX) is a p53-binding protein that shares structural similarities with Mdm2 and has been proposed to be a negative regulator of p53 function. Like Mdm2, the absence of Mdm4 has recently been found to induce embryonic lethality in mice that is rescued by p53 deletion. Mdm4-null embryos are reduced in size and die at mid-gestation, and Mdm4-deficient embryos and embryonic fibroblasts displayed reduced rates of cell proliferation. The p53-induced, cyclin-dependent kinase inhibitor p21 is strongly upregulated in Mdm4-null embryos and cells. Here, we report that deletion of p21 delays the mid-gestation lethality observed in Mdm4-null mice, suggesting that Mdm4 downregulates p53-mediated suppression of cell growth. Surprisingly, the absence of p21 also uncovers an antiproliferative effect of Mdm4 on cell growth in vitro and in Mdm4-heterozygous mice. These results indicate that p21 is a downstream modifier of Mdm4, and provides genetic evidence that Mdm4 can function to regulate cell growth both positively and negatively.


Asunto(s)
Proteínas de Ciclo Celular , Ciclinas/fisiología , Proteínas de Unión al ADN , Proteínas Proto-Oncogénicas/fisiología , Animales , División Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Factores de Transcripción E2F , Embrión de Mamíferos/citología , Femenino , Fibroblastos/fisiología , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/fisiología , Ubiquitina-Proteína Ligasas
6.
Mol Endocrinol ; 29(1): 28-39, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25379953

RESUMEN

Diabetes is a growing health care issue, and prediabetes has been established as a risk factor for type 2 diabetes. Prediabetes is characterized by deregulated glucose control, and elucidating pathways which govern this process is critical. We have identified the wild-type (WT) p53-inducible phosphatase (WIP1) phosphatase as a regulator of glucose homeostasis. Initial characterization of insulin signaling in WIP1 knockout (WIP1(KO)) murine embryo fibroblasts demonstrated reduced insulin-mediated Ak mouse transforming activation. In order to assess the role of WIP1 in glucose homeostasis, we performed metabolic analysis on mice on a low-fat chow diet (LFD) and high fat diet (HFD). We observed increased expression of proinflammatory cytokines in WIP1(KO) murine embryo fibroblasts, and WIP1(KO) mice fed a LFD and a HFD. WIP1(KO) mice exhibited glucose intolerance and insulin intolerance on a LFD and HFD. However, the effects of WIP1 deficiency cause different metabolic defects in mice on a LFD and a HFD. WIP1(KO) mice on a LFD develop hepatic insulin resistance, whereas this is not observed in HFD-fed mice. Mouse body weights and food consumption increase slightly over time in LFD-fed WT and WIP1(KO) mice. Leptin levels are increased in LFD-fed WIP1(KO) mice, compared with WT. In contrast, HFD-fed WIP1(KO) mice are resistant to HFD-induced obesity, have decreased levels of food consumption, and decreased leptin levels compared with HFD-WT mice. WIP1 has been shown to regulate the nuclear factor kappa-light-chain-enhancer of activated B cells pathway, loss of which leads to increased inflammation. We propose that this increased inflammation triggers insulin resistance in WIP1(KO) mice on LFD and HFD.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Resistencia a la Insulina/genética , Fosfoproteínas Fosfatasas/genética , Estado Prediabético/genética , Animales , Células Cultivadas , Dieta con Restricción de Grasas , Dieta Alta en Grasa , Grasas de la Dieta , Fibroblastos/metabolismo , Predisposición Genética a la Enfermedad , Intolerancia a la Glucosa/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/biosíntesis , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Insulina/metabolismo , Interleucina-6/biosíntesis , Leptina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/patología , Cultivo Primario de Células , Proteína Fosfatasa 2C , Transducción de Señal/genética , Factor de Necrosis Tumoral alfa/biosíntesis
7.
PLoS One ; 6(9): e24813, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21980358

RESUMEN

Phosphorylation at murine Serine 18 (human Serine 15) is a critical regulatory process for the tumor suppressor function of p53. p53Ser18 residue is a substrate for ataxia-telangiectasia mutated (ATM) and ATM-related (ATR) protein kinases. Studies of mice with a germ-line mutation that replaces Ser18 with Ala (p53(S18A) mice) have demonstrated that loss of phosphorylation of p53Ser18 leads to the development of tumors, including lymphomas, fibrosarcomas, leukemia and leiomyosarcomas. The predominant lymphoma is B-cell lymphoma, which is in contrast to the lymphomas observed in Atm(-/-) animals. This observation and the fact that multiple kinases phosphorylate p53Ser18 suggest Atm-independent tumor suppressive functions of p53Ser18. Therefore, in order to examine p53Ser18 function in relationship to ATM, we analyzed the lifespan and tumorigenesis of mice with combined mutations in p53Ser18 and Atm. Surprisingly, we observed no cooperation in survival and tumorigenesis in compound p53(S18A) and Atm(-/-) animals. However, we observed embryonic lethality in the compound mutant animals. In addition, the homozygous p53Ser18 mutant allele impacted the weight of Atm(-/-) animals. These studies examine the genetic interaction of p53Ser18 and Atm in vivo. Furthermore, these studies demonstrate a role of p53Ser18 in regulating embryonic survival and motor coordination.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Regulación Neoplásica de la Expresión Génica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/fisiología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proliferación Celular , Femenino , Fibroblastos/citología , Mutación de Línea Germinal , Humanos , Masculino , Ratones , Ratones Transgénicos , Modelos Genéticos , Mutación , Fosforilación
8.
PLoS One ; 5(8): e12469, 2010 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-20814571

RESUMEN

The cJun NH2-terminal kinase (JNK) signal transduction pathway has been implicated in mammary carcinogenesis. To test the role of JNK, we examined the effect of ablation of the Jnk1 and Jnk2 genes in a Trp53-dependent model of breast cancer using BALB/c mice. We detected no defects in mammary gland development in virgin mice or during lactation and involution in control studies of Jnk1(-/-) and Jnk2(-/-) mice. In a Trp53(-/+) genetic background, mammary carcinomas were detected in 43% of control mice, 70% of Jnk1(-/-) mice, and 53% of Jnk2(-/-) mice. These data indicate that JNK1 and JNK2 are not essential for mammary carcinoma development in the Trp53(-/+) BALB/c model of breast cancer. In contrast, this analysis suggests that JNK may partially contribute to tumor suppression. This conclusion is consistent with the finding that tumor-free survival of JNK-deficient Trp53(-/+) mice was significantly reduced compared with control Trp53(-/+) mice. We conclude that JNK1 and JNK2 can act as suppressors of mammary tumor development.


Asunto(s)
Neoplasias de la Mama/enzimología , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Modelos Animales de Enfermedad , Femenino , Glándulas Mamarias Animales/enzimología , Glándulas Mamarias Animales/crecimiento & desarrollo , Ratones , Ratones Endogámicos BALB C , Proteína Quinasa 8 Activada por Mitógenos/deficiencia , Proteína Quinasa 9 Activada por Mitógenos/deficiencia , Análisis de Supervivencia , Proteína p53 Supresora de Tumor/deficiencia
9.
Mol Cell Biol ; 30(24): 5787-94, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20956556

RESUMEN

Ataxia telangiectasia (A-T) patients can develop multiple clinical pathologies, including neuronal degeneration, an elevated risk of cancer, telangiectasias, and growth retardation. Patients with A-T can also exhibit an increased risk of insulin resistance and type 2 diabetes. The ATM protein kinase, the product of the gene mutated in A-T patients (Atm), has been implicated in metabolic disease, which is characterized by insulin resistance and increased cholesterol and lipid levels, blood pressure, and atherosclerosis. ATM phosphorylates the p53 tumor suppressor on a site (Ser15) that regulates transcription activity. To test whether the ATM pathway that regulates insulin resistance is mediated by p53 phosphorylation, we examined insulin sensitivity in mice with a germ line mutation that replaces the p53 phosphorylation site with alanine. The loss of p53 Ser18 (murine Ser15) led to increased metabolic stress, including severe defects in glucose homeostasis. The mice developed glucose intolerance and insulin resistance. The insulin resistance correlated with the loss of antioxidant gene expression and decreased insulin signaling. N-Acetyl cysteine (NAC) treatment restored insulin signaling in late-passage primary fibroblasts. The addition of an antioxidant in the diet rendered the p53 Ser18-deficient mice glucose tolerant. This analysis demonstrates that p53 phosphorylation on an ATM site is an important mechanism in the physiological regulation of glucose homeostasis.


Asunto(s)
Glucosa/metabolismo , Homeostasis/fisiología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Antioxidantes/metabolismo , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/patología , Ataxia Telangiectasia/fisiopatología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Insulina/metabolismo , Resistencia a la Insulina , Ratones , Ratones Endogámicos C57BL , Mutación , Proteínas Nucleares , Peroxidasas , Proteínas/genética , Proteínas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Proteína p53 Supresora de Tumor/genética
10.
Mol Cancer Res ; 8(2): 216-22, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20145032

RESUMEN

ATM and p53 are critical regulators of the cellular DNA damage response and function as potent tumor suppressors. In cells undergoing ionizing radiation, ATM is activated by double-strand DNA breaks and phosphorylates the NH(2) terminus of p53 at serine residue 18. We have previously generated mice bearing an amino acid substitution at this position (p53S18A) and documented a role for p53 phosphorylation in DNA damage-induced apoptosis. In this present study, we have crossed E mu myc transgenic mice with our p53S18A mice to explore a role for ATM-p53 signaling in response to oncogene-induced tumorigenesis. Similar to DNA damage induced by ionizing radiation, expression of c-Myc in pre-B cells induces p53 serine 18 phosphorylation and Puma expression to promote apoptosis. E mu myc transgenic mice develop B-cell lymphoma more rapidly when heterozygous or homozygous for p53S18A alleles. However, E mu myc-induced tumorigenesis in p53S18A mice is slower than that observed in E mu myc mice deficient for either p53 or ATM, indicating that both p53-induced apoptosis and p53-induced growth arrest contribute to the suppression of B-cell lymphoma formation in E mu myc mice. These findings further reveal that oncogene expression and DNA damage activate the same ATM-p53 signaling cascade in vivo to regulate apoptosis and tumorigenesis.


Asunto(s)
Apoptosis/fisiología , Transformación Celular Neoplásica/metabolismo , Linfoma de Células B/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Secuencia de Aminoácidos/fisiología , Animales , Animales Modificados Genéticamente , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Transformación Celular Neoplásica/genética , Daño del ADN/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Linfoma de Células B/genética , Ratones , Ratones Endogámicos C57BL , Oncogenes/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Serina/metabolismo , Transducción de Señal/fisiología , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Regulación hacia Arriba/fisiología
11.
Cancer Res ; 67(24): 11696-703, 2007 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18089799

RESUMEN

The p53 tumor suppressor is phosphorylated at multiple sites within its NH(2)-terminal region. One of these phosphorylation sites (mouse Ser(18) and human Ser(15)) is a substrate for the ataxia telangiectasia-mutated (ATM) and ATM-related (ATR) protein kinases. Studies of p53(S18A) mice (with a germ-line mutation that replaces Ser(18) with Ala) have indicated that ATM/ATR phosphorylation of p53 Ser(18) is required for normal DNA damage-induced PUMA expression and apoptosis but not for DNA damage-induced cell cycle arrest. Unlike p53-null mice, p53(S18A) mice did not succumb to early-onset tumors. This finding suggested that phosphorylation of p53 Ser(18) was not required for p53-dependent tumor suppression. Here we report that the survival of p53(S18A) mice was compromised and that they spontaneously developed late-onset lymphomas (between ages 1 and 2 years). These mice also developed several malignancies, including fibrosarcoma, leukemia, leiomyosarcoma, and myxosarcoma, which are unusual in p53 mutant mice. Furthermore, we found that lymphoma development was linked with apoptotic defects. In addition, p53(S18A) animals exhibited several aging-associated phenotypes early, and murine embryonic fibroblasts from these animals underwent early senescence in culture. Together, these data indicate that the ATM/ATR phosphorylation site Ser(18) on p53 contributes to tumor suppression in vivo.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Serina-Treonina Quinasas/genética , Serina , Proteína p53 Supresora de Tumor/fisiología , Animales , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada , División Celular , Senescencia Celular , Embrión de Mamíferos , Fibroblastos/citología , Fibroblastos/fisiología , Genotipo , Mutación de Línea Germinal , Ratones , Ratones Endogámicos C57BL , Neoplasias/prevención & control
12.
Proc Natl Acad Sci U S A ; 104(40): 15759-64, 2007 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-17893331

RESUMEN

The JNK signaling pathway is implicated in the regulation of the AP1 transcription factor and cell proliferation. Here, we examine the role of JNK by using conditional and chemical genetic alleles of the ubiquitously expressed murine genes that encode the isoforms JNK1 and JNK2. Our analysis demonstrates that JNK is not essential for proliferation. However, JNK is required for expression of the cJun and JunD components of the AP1 transcription factor, and JNK-deficient cells exhibit early p53-dependent senescence. These data demonstrate that JNK can act as a negative regulator of the p53 tumor suppressor.


Asunto(s)
Senescencia Celular/fisiología , MAP Quinasa Quinasa 4/fisiología , Proteína p53 Supresora de Tumor/metabolismo , Animales , División Celular , Fibroblastos/citología , Fibroblastos/enzimología , Genes p53 , Cinética , MAP Quinasa Quinasa 4/genética , Ratones , Ratones Noqueados , Proteína Quinasa 8 Activada por Mitógenos/deficiencia , Proteína Quinasa 8 Activada por Mitógenos/genética , Reacción en Cadena de la Polimerasa , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética
13.
Mol Cell ; 23(2): 152-3, 2006 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-16857581

RESUMEN

The mechanism of apoptotic signaling by JNK is incompletely understood. In the July 7 issue of Molecular Cell, Lu et al. (2006) report that JNK phosphorylation of H2AX at a noncanonical site is required for caspase-induced DNA fragmentation.


Asunto(s)
Apoptosis/fisiología , Fragmentación del ADN , Histonas/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Transducción de Señal/fisiología , Fosforilación
14.
Expert Opin Ther Targets ; 7(1): 89-99, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12556205

RESUMEN

Loss of tumour suppressor function is a common mechanistic step in deregulated cell growth and neoplasia. The p53 tumour suppressor gene is the most frequently mutated gene in cancer, and is inactivated in approximately 50% of human tumours. Mutation of p53 is also the predominant molecular basis of the Li-Fraumeni familial cancer susceptibility syndrome. p53 is a transcription factor that functions to regulate the integrity of the genome in response to DNA damage by inducing genes that promote cell cycle arrest, cell death, or repair of damaged DNA. These various effects exerted by p53 ensure that mutations do not pass on to subsequent generations, thus avoiding the presence of cells with multiple genetic hits that predispose the cell to neoplastic growth. Analysis of p53 functions using genetically-modified mice has complimented studies performed with human cancer tissue or cultured cells, and has greatly expanded knowledge about the role of p53 in tumour suppression. This finer understanding of p53 function has greatly facilitated research into small-molecule and other drug modifications of p53 activity as treatment modalities for the many human cancers bearing altered p53 function. This review will examine mouse models containing p53 modifications, and access the contribution of these studies to the understanding of p53-mediated tumour suppression.


Asunto(s)
Proteína p53 Supresora de Tumor/fisiología , Acetilación , Envejecimiento/genética , Envejecimiento/fisiología , Alelos , Animales , Transformación Celular Neoplásica , Femenino , Marcación de Gen , Genes p53 , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones SCID , Mutación , Fosforilación , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Activación Transcripcional , Proteína p53 Supresora de Tumor/química
15.
Genes Dev ; 17(5): 629-37, 2003 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-12629045

RESUMEN

The c-Jun NH(2)-terminal kinase (JNK) phosphorylates and activates members of the activator protein-1 (AP-1) group of transcription factors and is implicated in oncogenic transformation. To examine the role of JNK, we investigated the effect of JNK deficiency on Ras-stimulated transformation. We demonstrate that although JNK does play a role in transformation in vitro, JNK is not required for tumor development in vivo. Importantly, the loss of JNK expression resulted in substantial increases in the number and growth of tumor nodules in vivo. Complementation assays demonstrated that this phenotype was caused by JNK deficiency. These data demonstrate that, in contrast to expectations, the normal function of JNK may be to suppress tumor development in vivo. This conclusion is consistent with the presence in human tumors of loss-of-function mutations in the JNK pathway.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal/fisiología , Proteínas ras/metabolismo , Animales , Línea Celular , Transformación Celular Neoplásica/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Técnicas In Vitro , Proteínas Quinasas JNK Activadas por Mitógenos , Masculino , Ratones , Ratones Desnudos , Proteínas Quinasas Activadas por Mitógenos/genética , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Proteínas ras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA