Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6308, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060266

RESUMEN

Pollinator-driven evolution of floral traits is thought to be a major driver of angiosperm speciation and diversification. Ophrys orchids mimic female insects to lure male pollinators into pseudocopulation. This strategy, called sexual deception, is species-specific, thereby providing strong premating reproductive isolation. Identifying the genomic architecture underlying pollinator adaptation and speciation may shed light on the mechanisms of angiosperm diversification. Here, we report the 5.2 Gb chromosome-scale genome sequence of Ophrys sphegodes. We find evidence for transposable element expansion that preceded the radiation of the O. sphegodes group, and for gene duplication having contributed to the evolution of chemical mimicry. We report a highly differentiated genomic candidate region for pollinator-mediated evolution on chromosome 2. The Ophrys genome will prove useful for investigations into the repeated evolution of sexual deception, pollinator adaptation and the genomic architectures that facilitate evolutionary radiations.


Asunto(s)
Orchidaceae , Polinización , Arañas , Animales , Orchidaceae/genética , Orchidaceae/fisiología , Polinización/genética , Arañas/genética , Arañas/fisiología , Genoma de Planta , Filogenia , Flores/genética , Flores/fisiología , Adaptación Fisiológica/genética , Elementos Transponibles de ADN/genética , Masculino , Femenino , Evolución Molecular , Duplicación de Gen , Aislamiento Reproductivo , Evolución Biológica
2.
Front Plant Sci ; 10: 392, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31001306

RESUMEN

The genera Boechera (A. Löve et D. Löve) and Arabidopsis, the latter containing the model plant Arabidopsis thaliana, belong to the same clade within the Brassicaceae family. Boechera is the only among the more than 370 genera in the Brassicaceae where apomixis is well documented. Apomixis refers to the asexual reproduction through seed, and a better understanding of the underlying mechanisms has great potential for applications in agriculture. The Boechera genus currently includes 110 species (of which 38 are reported to be triploid and thus apomictic), which are distributed mostly in the North America. The apomictic lineages of Boechera occur at both the diploid and triploid level and show signs of a hybridogenic origin, resulting in a modification of their chromosome structure, as reflected by alloploidy, aneuploidy, substitutions of homeologous chromosomes, and the presence of aberrant chromosomes. In this review, we discuss the advantages of the Boechera genus to study apomixis, consider its modes of reproduction as well as the inheritance and possible mechanisms controlling apomixis. We also consider population genetic aspects and a possible role of hybridization at the origin of apomixis in Boechera. The molecular tools available to study Boechera, such as transformation techniques, laser capture microdissection, analysis of transcriptomes etc. are also discussed. We survey available genome assemblies of Boechera spp. and point out the challenges to assemble the highly heterozygous genomes of apomictic species. Due to these challenges, we argue for the application of an alternative reference-free method for the comparative analysis of such genomes, provide an overview of genomic sequencing data in the genus Boechera suitable for such analysis, and provide examples of its application.

3.
Genome Biol ; 19(1): 9, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29368664

RESUMEN

BACKGROUND: In plants, the existence and possible role of epigenetic reprogramming has been questioned because of the occurrence of stably inherited epialleles. Evidence suggests that epigenetic reprogramming does occur during land plant reproduction, but there is little consensus on the generality and extent of epigenetic reprogramming in plants. We studied DNA methylation dynamics during the life cycle of the liverwort Marchantia polymorpha. We isolated thalli and meristems from male and female gametophytes, archegonia, antherozoids, as well as sporophytes at early and late developmental stages, and compared their DNA methylation profiles. RESULTS: Of all cytosines tested for differential DNA methylation, 42% vary significantly in their methylation pattern throughout the life cycle. However, the differences are limited to few comparisons between specific stages of the life cycle and suggest four major epigenetic states specific to sporophytes, vegetative gametophytes, antherozoids, and archegonia. Further analyses indicated clear differences in the mechanisms underlying reprogramming in the gametophytic and sporophytic generations, which are paralleled by differences in the expression of genes involved in DNA methylation. Differentially methylated cytosines with a gain in methylation in antherozoids and archegonia are enriched in the CG and CHG contexts, as well as in gene bodies and gene flanking regions. In contrast, gain of DNA methylation during sporophyte development is mostly limited to the CHH context, LTR retrotransposons, DNA transposons, and repeats. CONCLUSION: We conclude that epigenetic reprogramming occurs at least twice during the life cycle of M. polymorpha and that the underlying mechanisms are likely different between the two events.


Asunto(s)
Epigénesis Genética , Marchantia/genética , Cromosomas de las Plantas , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Estadios del Ciclo de Vida , Marchantia/crecimiento & desarrollo , Cromosomas Sexuales
4.
Genes (Basel) ; 9(4)2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29597328

RESUMEN

Closely related to the model plant Arabidopsis thaliana, the genus Boechera is known to contain both sexual and apomictic species or accessions. Boechera retrofracta is a diploid sexually reproducing species and is thought to be an ancestral parent species of apomictic species. Here we report the de novo assembly of the B. retrofracta genome using short Illumina and Roche reads from 1 paired-end and 3 mate pair libraries. The distribution of 23-mers from the paired end library has indicated a low level of heterozygosity and the presence of detectable duplications and triplications. The genome size was estimated to be equal 227 Mb. N50 of the assembled scaffolds was 2.3 Mb. Using a hybrid approach that combines homology-based and de novo methods 27,048 protein-coding genes were predicted. Also repeats, transfer RNA (tRNA) and ribosomal RNA (rRNA) genes were annotated. Finally, genes of B. retrofracta and 6 other Brassicaceae species were used for phylogenetic tree reconstruction. In addition, we explored the histidine exonuclease APOLLO locus, related to apomixis in Boechera, and proposed model of its evolution through the series of duplications. An assembled genome of B. retrofracta will help in the challenging assembly of the highly heterozygous genomes of hybrid apomictic species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA