RESUMEN
To examine the feasibility, utility and safety of superimposed lower body negative pressure (LBNP) and tilt during supine cycling in individuals suffering from persisting post-concussive symptoms (PPCS). Eleven individuals aged 17-31 (6 females/5 males) participated in two randomized separate visits, 1 week apart. A ramp-incremental test was performed during both visits until volitional failure. Visits included no pressure (control) or LBNP at -40 Torr (experimental) with head-up tilt at 15 degrees (females) or 30 degrees (males). Transcranial Doppler ultrasound was utilized to quantify middle cerebral artery velocity (MCAv), while symptom reports were filled out before and 0, 10, and 60 min post-exertion. Ratings of exertion and overall condition followed similar trends for participants across both tests. The relative increase in MCAv was blunted during the experimental condition (8%) compared to control (24%), while a greater heart rate (17 beats/min) was achieved during the LBNP condition (P = 0.047). Symptom severity at the 0 and 10 min post-exertion time points displayed negligible-to-small effect sizes between conditions (Wilcoxon's r < 0.11). Symptom reporting was lower at the 60 min post-exertion time point with these displaying a moderate effect size (Wilcoxon's r = 0.31). The combination of LBNP and tilt during supine cycling did not change the participants' subjective interpretation of the exertional test but attenuated the hyperpnia-induced vasodilatory MCAv response, while also enabling participants to achieve a higher heart rate during exercise and reduced symptoms 1 h later. As this protocol is safe and feasible, further research is warranted in this area for developing PPCS treatment options. HIGHLIGHTS: What is the central question of this study? What are the feasibility, safety and utility of combining head-up tilt with lower body negative pressure during supine cycling for blunting the increase in cerebral blood velocity seen during moderate-intensity exercise in individuals experiencing persisting post-concussion symptoms? What is the main finding and its importance? Although no differences were found in symptoms between conditions within the first 10 min following exertion, symptom severity scores showed a clinically meaningful reduction 60 min following the experimental condition compared to the non-experimental control condition.
RESUMEN
There are differences within the literature regarding the upper frequency cut-off point of the dynamic cerebral autoregulation (CA) high-pass filter. The projection pursuit regression approach has demonstrated that the upper frequency limit is â¼0.07 Hz, whereas another approach [transfer function analysis (TFA) phase approaching zero] indicated a theoretical upper frequency limit for the high-pass filter of 0.24 Hz. We investigated how these limits accurately represent the CA upper frequency limit, in addition to extending earlier findings with respect to biological sexes and across the cardiac cycle. Sixteen participants (nine females and seven males) performed repeated squat-stand manoeuvres at frequencies of 0.05, 0.10, 0.15, 0.20 and 0.25 Hz, with insonation of the middle and posterior cerebral arteries. Linear regression modelling with adjustment for sex and order of squat completion was used to compared TFA gain and phase with 0.25 Hz (above the theoretical limit of CA). The upper frequency limit of CA with TFA gain was within the range of 0.05-0.10 Hz, whereas TFA phase was within the range of 0.20-0.25 Hz, and consistent between vessels, between sexes and across the cardiac cycle. Females displayed greater middle cerebral artery gain compared with males (all P < 0.047), and no phase differences were present (all P > 0.072). Although sex-specific differences were present for specific TFA metrics at a given frequency, the upper frequency limit of autoregulation was similar between cerebral conduit vessels, cardiac cycle phase and biological sex. Future work is warranted to determine whether an upper frequency limit exists with respect to hysteresis analyses.
RESUMEN
In this review, we have amalgamated the literature, taking a multimodal neuroimaging approach to quantify the relationship between neuronal firing and haemodynamics during a task paradigm (i.e., neurovascular coupling response), while considering confounding physiological influences. Original research articles that used concurrent neuronal and haemodynamic quantification in humans (n ≥ 10) during a task paradigm were included from PubMed, Scopus, Web of Science, EMBASE and PsychINFO. Articles published before 31 July 2023 were considered for eligibility. Rapid screening was completed by the first author. Two authors completed the title/abstract and full-text screening. Article quality was assessed using a modified version of the National Institutes of Health Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. A total of 364 articles were included following title/abstract and full-text screening. The most common combination was EEG/functional MRI (68.7%), with cognitive (48.1%) and visual (27.5%) tasks being the most common. The majority of studies displayed an absence/minimal control of blood pressure, arterial gas concentrations and/or heart rate (92.9%), and only 1.3% monitored these factors. A minority of studies restricted or collected data pertaining to caffeine (7.4%), exercise (0.8%), food (0.5%), nicotine (2.7%), the menstrual cycle (0.3%) or cardiorespiratory fitness levels (0.5%). The cerebrovasculature is sensitive to numerous factors; thus, to understand the neurovascular coupling response fully, better control for confounding physiological influences of blood pressure and respiratory metrics is imperative during study-design formulation. Moreover, further work should continue to examine sex-based differences, the influence of sex steroid hormone concentrations and cardiorespiratory fitness.
RESUMEN
INTRODUCTION: Cerebrovascular reactivity (CVR) describes the vasculature's response to vasoactive stimuli, where prior investigations relied solely on mean data, rather than exploring cardiac cycle differences. METHODS: Seventy-one participants (46 females and 25 males) from two locations underwent TCD measurements within the middle or posterior cerebral arteries (MCA, PCA). Females were tested in the early-follicular phase. The hypercapnia response was assessed using a rebreathing protocol (93% oxygen and 7% carbon dioxide) or dynamic end-tidal forcing as a cerebral blood velocity (CBv) change from 40 to 55-Torr. The hypocapnia response was quantified using a hyperventilation protocol as a CBv change from 40 to 25-Torr. Absolute and relative CVR slopes were compared across cardiac cycle phases, vessels, and biological sexes using analysis of covariance with Tukey post-hoc comparisons. RESULTS: No differences were found between hypercapnia methods used (p > 0.050). Absolute hypercapnic slopes were highest in systole (p < 0.001), with no cardiac cycle differences for absolute hypocapnia (p > 0.050). Relative slopes were largest in diastole and smallest in systole for both hypercapnia and hypocapnia (p < 0.001). Females exhibited greater absolute CVR responses (p < 0.050), while only the relative systolic hypercapnic response was different between sexes (p = 0.001). Absolute differences were present between the MCA and PCA (p < 0.001), which vanished when normalizing data to baseline values (p > 0.050). CONCLUSION: Cardiac cycle variations impact CVR responses, with females displaying greater absolute CVR in some cardiac phases during the follicular window. These findings are likely due to sex differences in endothelial receptors/signalling pathways. Future CVR studies should employ assessments across the cardiac cycle.
RESUMEN
INTRODUCTION: Concussion is known to cause transient autonomic and cerebrovascular dysregulation that generally recovers; however, few studies have focused on individuals with an extensive concussion history. METHOD: The case was a 26-year-old male with a history of 10 concussions, diagnosed for bipolar type II disorder, mild attention-deficit hyperactivity disorder, and a history of migraines/headaches. The case was medicated with Valproic Acid and Escitalopram. Sensor-based baseline data were collected within six months of his injury and on days 1-5, 10, and 14 post-injury. Symptom reporting, heart rate variability (HRV), neurovascular coupling (NVC), and dynamic cerebral autoregulation (dCA) assessments were completed using numerous biomedical devices (i.e., transcranial Doppler ultrasound, 3-lead electrocardiography, finger photoplethysmography). RESULTS: Total symptom and symptom severity scores were higher for the first-week post-injury, with physical and emotional symptoms being the most impacted. The NVC response showed lowered activation in the first three days post-injury, while autonomic (HRV) and autoregulation (dCA) were impaired across all testing visits occurring in the first 14 days following his concussion. CONCLUSIONS: Despite symptom resolution, the case demonstrated ongoing autonomic and autoregulatory dysfunction. Larger samples examining individuals with an extensive history of concussion are warranted to understand the chronic physiological changes that occur following cumulative concussions through biosensing devices.
Asunto(s)
Conmoción Encefálica , Frecuencia Cardíaca , Humanos , Masculino , Adulto , Conmoción Encefálica/fisiopatología , Conmoción Encefálica/diagnóstico por imagen , Frecuencia Cardíaca/fisiología , Sistema Nervioso Autónomo/fisiopatología , Electrocardiografía/métodos , Acoplamiento Neurovascular/fisiología , Fotopletismografía/métodos , Ultrasonografía Doppler Transcraneal/métodosRESUMEN
Wearable technology and neuroimaging equipment using photoplethysmography (PPG) have become increasingly popularized in recent years. Several investigations deriving pulse rate variability (PRV) from PPG have demonstrated that a slight bias exists compared to concurrent heart rate variability (HRV) estimates. PPG devices commonly sample at ~20-100 Hz, where the minimum sampling frequency to derive valid PRV metrics is unknown. Further, due to different autonomic innervation, it is unknown if PRV metrics are harmonious between the cerebral and peripheral vasculature. Cardiac activity via electrocardiography (ECG) and PPG were obtained concurrently in 54 participants (29 females) in an upright orthostatic position. PPG data were collected at three anatomical locations: left third phalanx, middle cerebral artery, and posterior cerebral artery using a Finapres NOVA device and transcranial Doppler ultrasound. Data were sampled for five minutes at 1000 Hz and downsampled to frequencies ranging from 20 to 500 Hz. HRV (via ECG) and PRV (via PPG) were quantified and compared at 1000 Hz using Bland-Altman plots and coefficient of variation (CoV). A sampling frequency of ~100-200 Hz was required to produce PRV metrics with a bias of less than 2%, while a sampling rate of ~40-50 Hz elicited a bias smaller than 20%. At 1000 Hz, time- and frequency-domain PRV measures were slightly elevated compared to those derived from HRV (mean bias: ~1-8%). In conjunction with previous reports, PRV and HRV were not surrogate biomarkers due to the different nature of the collected waveforms. Nevertheless, PRV estimates displayed greater validity at a lower sampling rate compared to HRV estimates.
Asunto(s)
Sistema Nervioso Autónomo , Benchmarking , Femenino , Humanos , Frecuencia Cardíaca , Correlación de Datos , ElectrocardiografíaRESUMEN
Frequency-domain near-infrared spectroscopy (FD-NIRS) has been used for non-invasive assessment of cortical oxygenation since the late 1990s. However, there is limited research demonstrating clinical validity and general reproducibility. To address this limitation, recording duration for adequate validity and within- and between-day reproducibility of prefrontal cortical oxygenation was evaluated. To assess validity, a reverse analysis of 10-min-long measurements (n = 52) at different recording durations (1-10-min) was quantified via coefficients of variation and Bland-Altman plots. To assess within- and between-day within-subject reproducibility, participants (n = 15) completed 2-min measurements twice a day (morning/afternoon) for five consecutive days. While 1-min recordings demonstrated sufficient validity for the assessment of oxygen saturation (StO2) and total hemoglobin concentration (THb), recordings ≥4 min revealed greater clinical utility for oxy- (HbO) and deoxyhemoglobin (HHb) concentration. Females had lower StO2, THb, HbO, and HHb values than males, but variability was approximately equal between sexes. Intraclass correlation coefficients ranged from 0.50-0.96. The minimal detectable change for StO2 was 1.15% (95% CI: 0.336-1.96%) and 3.12 µM for THb (95% CI: 0.915-5.33 µM) for females and 2.75% (95%CI: 0.807-4.70%) for StO2 and 5.51 µM (95%CI: 1.62-9.42 µM) for THb in males. Overall, FD-NIRS demonstrated good levels of between-day reliability. These findings support the application of FD-NIRS in field-based settings and indicate a recording duration of 1 min allows for valid measures; however, data recordings of ≥4 min are recommended when feasible.
Asunto(s)
Hemoglobinas , Oxígeno , Corteza Prefrontal , Espectroscopía Infrarroja Corta , Humanos , Espectroscopía Infrarroja Corta/métodos , Masculino , Femenino , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/metabolismo , Adulto , Reproducibilidad de los Resultados , Oxígeno/metabolismo , Oxígeno/análisis , Hemoglobinas/análisis , Hemoglobinas/metabolismo , Saturación de Oxígeno/fisiología , Adulto Joven , Oxihemoglobinas/metabolismo , Oxihemoglobinas/análisisRESUMEN
PURPOSE: Patients with dysautonomia often experience symptoms such as dizziness, syncope, blurred vision and brain fog. Dynamic cerebral autoregulation, or the ability of the cerebrovasculature to react to transient changes in arterial blood pressure, could be associated with these symptoms. METHODS: In this narrative review, we go beyond the classical view of cerebral autoregulation to discuss dynamic cerebral autoregulation, focusing on recent advances pitfalls and future directions. RESULTS: Following some historical background, this narrative review provides a brief overview of the concept of cerebral autoregulation, with a focus on the quantification of dynamic cerebral autoregulation. We then discuss the main protocols and analytical approaches to assess dynamic cerebral autoregulation, including recent advances and important issues which need to be tackled. CONCLUSION: The researcher or clinician new to this field needs an adequate comprehension of the toolbox they have to adequately assess, and interpret, the complex relationship between arterial blood pressure and cerebral blood flow in healthy individuals and clinical populations, including patients with autonomic disorders.
Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Humanos , Presión Sanguínea/fisiología , Homeostasis/fisiología , Síncope , MareoRESUMEN
OBJECTIVES: To evaluate prevention strategies, their unintended consequences and modifiable risk factors for sport-related concussion (SRC) and/or head impact risk. DESIGN: This systematic review and meta-analysis was registered on PROSPERO (CRD42019152982) and conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. DATA SOURCES: Eight databases (MEDLINE, CINAHL, APA PsycINFO, Cochrane (Systematic Review and Controlled Trails Registry), SPORTDiscus, EMBASE, ERIC0 were searched in October 2019 and updated in March 2022, and references searched from any identified systematic review. ELIGIBILITY CRITERIA: Study inclusion criteria were as follows: (1) original data human research studies, (2) investigated SRC or head impacts, (3) evaluated an SRC prevention intervention, unintended consequence or modifiable risk factor, (4) participants competing in any sport, (5) analytic study design, (6) systematic reviews and meta-analyses were included to identify original data manuscripts in reference search and (7) peer-reviewed. Exclusion criteria were as follows: (1) review articles, pre-experimental, ecological, case series or case studies and (2) not written in English. RESULTS: In total, 220 studies were eligible for inclusion and 192 studies were included in the results based on methodological criteria as assessed through the Scottish Intercollegiate Guidelines Network high ('++') or acceptable ('+') quality. Evidence was available examining protective gear (eg, helmets, headgear, mouthguards) (n=39), policy and rule changes (n=38), training strategies (n=34), SRC management strategies (n=12), unintended consequences (n=5) and modifiable risk factors (n=64). Meta-analyses demonstrated a protective effect of mouthguards in collision sports (incidence rate ratio, IRR 0.74; 95% CI 0.64 to 0.89). Policy disallowing bodychecking in child and adolescent ice hockey was associated with a 58% lower concussion rate compared with bodychecking leagues (IRR 0.42; 95% CI 0.33 to 0.53), and evidence supports no unintended injury consequences of policy disallowing bodychecking. In American football, strategies limiting contact in practices were associated with a 64% lower practice-related concussion rate (IRR 0.36; 95% CI 0.16 to 0.80). Some evidence also supports up to 60% lower concussion rates with implementation of a neuromuscular training warm-up programme in rugby. More research examining potentially modifiable risk factors (eg, neck strength, optimal tackle technique) are needed to inform concussion prevention strategies. CONCLUSIONS: Policy and rule modifications, personal protective equipment, and neuromuscular training strategies may help to prevent SRC. PROSPERO REGISTRATION NUMBER: CRD42019152982.
Asunto(s)
Conmoción Encefálica , Fútbol Americano , Hockey , Adolescente , Niño , Humanos , Conmoción Encefálica/prevención & control , Rugby , Bases de Datos FactualesRESUMEN
OBJECTIVE: To determine what tests and measures accurately diagnose persisting post-concussive symptoms (PPCS) in children, adolescents and adults following sport-related concussion (SRC). DESIGN: A systematic literature review. DATA SOURCES: MEDLINE, Embase, PsycINFO, Cochrane Central Register of Controlled Trials, CINAHL and SPORTDiscus through March 2022. ELIGIBILITY CRITERIA: Original, empirical, peer-reviewed findings (cohort studies, case-control studies, cross-sectional studies and case series) published in English and focused on SRC. Studies needed to compare individuals with PPCS to a comparison group or their own baseline prior to concussion, on tests or measures potentially affected by concussion or associated with PPCS. RESULTS: Of 3298 records screened, 26 articles were included in the qualitative synthesis, including 1016 participants with concussion and 531 in comparison groups; 7 studies involved adults, 8 involved children and adolescents and 11 spanned both age groups. No studies focused on diagnostic accuracy. Studies were heterogeneous in participant characteristics, definitions of concussion and PPCS, timing of assessment and the tests and measures examined. Some studies found differences between individuals with PPCS and comparison groups or their own pre-injury assessments, but definitive conclusions were not possible because most studies had small convenience samples, cross-sectional designs and were rated high risk of bias. CONCLUSION: The diagnosis of PPCS continues to rely on symptom report, preferably using standardised symptom rating scales. The existing research does not indicate that any other specific tool or measure has satisfactory accuracy for clinical diagnosis. Future research drawing on prospective, longitudinal cohort studies could help inform clinical practice.
Asunto(s)
Conmoción Encefálica , Síndrome Posconmocional , Humanos , Adolescente , Adulto , Niño , Síndrome Posconmocional/diagnóstico , Estudios Transversales , Estudios Longitudinales , Estudios Prospectivos , Conmoción Encefálica/diagnósticoRESUMEN
PURPOSE: Symptom scores commonly measured following concussion were compared between male and female adolescents with (Hx+) and without (Hx-) a history of concussion, pre and post physical exertion testing. METHODS: Eighty (males [n = 60; Hx+ = 19], female [n = 20; Hx+ = 5]) high school students (ages 15-17 y) completed the Buffalo Concussion Treadmill Test once and the modified shuttle run test twice. Symptom scores were collected using the 22-point Symptom Evaluation Scale on the Sport Concussion Assessment Tool (version 5) immediately pre and post physical exertion testing. RESULTS: The symptoms most reported during preexertional testing were fatigue/low energy, feeling slowed down, and nervous/anxious, whereas feeling slowed down, fatigue/low energy, "pressure in head" (males only), and headache (females only) were most frequently reported during postexertion testing. CONCLUSION: An understanding of the common exertion-related symptoms at baseline in a laboratory or field-based setting in adolescents may be advantageous for clinicians as they manage individual recovery postconcussion. This is particularly important during an adolescent's recovery and return to play when exertional testing may be implemented, especially since symptoms were reported pre and post exertional testing in both males and females regardless of concussion history.
Asunto(s)
Traumatismos en Atletas , Conmoción Encefálica , Síndrome Posconmocional , Masculino , Humanos , Femenino , Síndrome Posconmocional/diagnóstico , Conmoción Encefálica/diagnóstico , Fatiga/diagnóstico , Estudiantes , Pruebas NeuropsicológicasRESUMEN
Cerebral hemodynamics, e.g., cerebral blood flow, can be measured and quantified using many different methods, with transcranial Doppler ultrasound (TCD) being one of the most commonly used approaches. In human physiology, the terminology used to describe metrics of cerebral hemodynamics are inconsistent and in some instances technically inaccurate; this is especially true when evaluating, reporting, and interpreting measures from TCD. Therefore, this perspective article presents recommended terminology when reporting cerebral hemodynamic data. We discuss the current use and misuse of the terminology in the context of using TCD to measure and quantify cerebral hemodynamics and present our rationale and consensus on the terminology that we recommend moving forward. For example, one recommendation is to discontinue the use of the term "cerebral blood flow velocity" in favor of "cerebral blood velocity" with precise indication of the vessel of interest. We also recommend clarity when differentiating between discrete cerebrovascular regulatory mechanisms, namely, cerebral autoregulation, neurovascular coupling, and cerebrovascular reactivity. This will be a useful guide for investigators in the field of cerebral hemodynamics research.
Asunto(s)
Hemodinámica , Ultrasonografía Doppler Transcraneal , Velocidad del Flujo Sanguíneo/fisiología , Circulación Cerebrovascular/fisiología , Hemodinámica/fisiología , Homeostasis , Humanos , Estándares de Referencia , Ultrasonografía Doppler Transcraneal/métodosRESUMEN
NEW FINDINGS: What is the central question of this study? Does habitual exercise modality affect the directionality of the cerebral pressure-flow relationship? What is the main finding and its importance? These data suggest the hysteresis-like pattern of dynamic cerebral autoregulation appears present in long-term sedentary and endurance-trained individuals, but absent in resistance-trained individuals. This is the first study to expand knowledge on the directional sensitivity of the cerebral pressure-flow relationship to trained populations. ABSTRACT: Evidence suggests the cerebrovasculature may be more efficient at dampening cerebral blood flow (CBF) variations when mean arterial pressure (MAP) transiently increases, compared to when it decreases. Despite divergent MAP and CBF responses to acute endurance and resistance training, the long-term impact of habitual exercise modality on the directionality of dynamic cerebral autoregulation (dCA) is currently unknown. Thirty-six young healthy participants (sedentary (n = 12), endurance-trained (n = 12), and resistance-trained (n = 12)) undertook a 5-min repeated squat-stand protocol at two forced MAP oscillation frequencies (0.05 and 0.10 Hz). Middle cerebral artery mean blood velocity (MCAv) and MAP were continuously monitored. We calculated absolute (ΔMCAvT /ΔMAPT ) and relative (%MCAvT /%MAPT ) changes in MCAv and MAP with respect to the transition time intervals of both variables to compute a time-adjusted ratio in each MAP direction, averaged over the 5-min repeated squat-stand protocols. At 0.10 Hz repeated squat-stands, ΔMCAvT /ΔMAPT and %MCAvT /%MAPT were lower when MAP increased compared with when MAP decreased for sedentary (ΔMCAvT /ΔMAPT : P = 0.032; %MCAvT /%MAPT : P = 0.040) and endurance-trained individuals (ΔMCAvT /ΔMAPT : P = 0.012; %MCAvT /%MAPT P = 0.007), but not in the resistance-trained individuals (ΔMCAvT /ΔMAPT : P = 0.512; %MCAvT /%MAPT P = 0.666). At 0.05 Hz repeated squat-stands, time-adjusted ratios were similar for all groups (all P > 0.605). These findings suggest exercise training modality does influence the directionality of the cerebral pressure-flow relationship and support the presence of a hysteresis-like pattern during 0.10 Hz repeated squat-stands in sedentary and endurance-trained participants, but not in resistance-trained individuals. In future studies, assessment of elite endurance and resistance training habits may further elucidate modality-dependent discrepancies on directional dCA measurements.
Asunto(s)
Entrenamiento de Fuerza , Velocidad del Flujo Sanguíneo , Presión Sanguínea , Circulación Cerebrovascular/fisiología , Ejercicio Físico , Humanos , Arteria Cerebral Media/fisiologíaRESUMEN
OBJECTIVES: There is growing concern repetitive head contacts sustained by soccer players may lead to long-term health ramifications. Therefore, this preliminary investigation examined the impact an acute soccer heading bout has on dynamic cerebral autoregulation (dCA) metrics. METHODS: In this preliminary investigation, 40 successful soccer headers were performed in 20 min by 7 male elite soccer players (24.1 ± 1.5 years). Soccer balls were launched at 77.5 ± 3.7 km/h from JUGS soccer machine, located 35 m away from participants. Linear and rotational head accelerations impacts were measured using an accelerometer (xPatch). The SCAT3 indexed concussion symptom score and severity before and after: soccer headers, sham (body contact only), and control conditions. Squat-stand maneuvers were performed at 0.05 Hz and 0.10 Hz to quantity dCA through measures of coherence, phase, and gain. RESULTS: Cumulative linear and rotational accelerations during soccer headers were 1574 ± 97.9 g and 313,761 ± 23,966 rads/s2, respectively. SCAT3 symptom severity was elevated after the soccer heading bout (pre 3.7 ± 3.6, post 9.4 ± 7.6: p = 0.030) and five of the seven participants reported an increase in concussion-like symptoms (pre: 2.6 ± 3.0, post: 6.7 ± 6.2; p = 0.078). Phase at 0.10 Hz was elevated following soccer heading (p = 0.008). No other dCA metric differed following the three conditions. CONCLUSION: These preliminary results indicate an acute bout of soccer heading resulted in alterations to dCA metrics. Therefore, future research with larger sample sizes is warranted to fully comprehend short- and long-term physiological changes related to soccer heading.
Asunto(s)
Conmoción Encefálica , Fútbol , Aceleración , Conmoción Encefálica/diagnóstico , Homeostasis , Humanos , Masculino , Fútbol/fisiologíaRESUMEN
Previous research has highlighted that squat-stand maneuvers (SSMs) augment coherence values within the cerebral pressure-flow relationship to â¼0.99. However, it is not fully elucidated if mean arterial pressure (MAP) leads to this physiological entrainment independently, or if heart rate (HR) and/or the partial pressure of carbon dioxide (Pco2) also have contributing influences. A 2:1 control-to-case model was used in the present investigation [participant number (n) = 40; n = 16 age-matched (AM); n = 16 donor control (DM); n = 8 heart transplant recipients (HTRs)]. The latter group was used to mechanistically isolate the extent to which HR influences the cerebral pressure-flow relationship. Participants completed 5 min of squat-stand maneuvers at 0.05 Hz (10 s) and 0.10 Hz (5 s). Linear transfer function analysis (TFA) examined the relationship between different physiological inputs (i.e., MAP, HR, and Pco2) and output [cerebral blood velocity (CBV)] during SSM; and cardiac baroreceptor sensitivity (BRS). Compared with DM, cardiac BRS was reduced in AM (P < 0.001), which was further reduced in HTR (P < 0.045). In addition, during the SSM, HR was elevated in HTR compared with both control groups (P < 0.001), but all groups had near-maximal coherence metrics ≥0.98 at 0.05 Hz and ≥0.99 at 0.10 Hz (P ≥ 0.399). In contrast, the mean HR-CBV/Pco2-CBV relationships ranged from 0.38 (HTR) to 0.81 (DM). Despite near abolishment of BRS and blunted HR following heart transplantation, long-term HTR exhibited near-maximal coherence within the MAP-CBV relationship, comparable with AM and DM. Therefore, these results show that the augmented coherence with SSM is driven by blood pressure, whereas elevations in TFA coherence as a result of HR contribution are likely correlational in nature.
Asunto(s)
Presión Arterial , Circulación Cerebrovascular , Ejercicio Físico , Frecuencia Cardíaca , Trasplante de Corazón , Contracción Muscular , Sobrevivientes , Receptores de Trasplantes , Adulto , Anciano , Barorreflejo , Estudios de Casos y Controles , Homeostasis , Humanos , Masculino , Persona de Mediana Edad , Factores Sexuales , Factores de Tiempo , Resultado del Tratamiento , Adulto JovenRESUMEN
BACKGROUND: While cardiac pulsations are widely present within physiological and neuroimaging data, it is unknown the extent this information can provide valid and reliable heart rate and heart rate variability (HRV) estimates. The objective of this study was to demonstrate how a slight temporal shift due to an insufficient sampling frequency can impact the validity/accuracy of deriving cardiac metrics. METHODS: Twenty-two participants were instrumented with valid/reliable industry-standard or open-source electrocardiograms. Five-minute lead II recordings were collected at 1000 Hz in an upright orthostatic position. Following artifact removal, the 1000 Hz recording for each participant was downsampled to frequencies ranging 2-500 Hz. The validity of each participant's downsampled recording was compared against their 1000 Hz recording ("reference-standard") using Bland-Altman plots with 95 % limits of agreement (LOA), coefficient of variation (CoV), intraclass correlation coefficients, and adjusted r-squared values. RESULTS: Downsampled frequencies of ≥ 50 and ≥ 90 Hz produced highly robust measures with narrow log-transformed 95 % LOA (<±0.01) and low CoV values (≤3.5 %) for heart rate and HRV metrics, respectively. Below these thresholds, the log-transformed 95 % LOA became wider (LOA range: ±0.1-1.9) and more variable (CoV range: 1.5-111.6 %). CONCLUSION: These results provide an important consideration for obtaining cardiac information from physiological data. Compared to the "reference-standard" ECG, a seemingly negligible temporal shift of the systolic contraction (R wave) greater than 11-milliseconds (90 Hz) away from its true value, lessened the validity of the HRV. Further research is warranted to determine the minimum sampling frequency required to obtain valid heart rate/HRV metrics from pulsatile waveforms.
Asunto(s)
Benchmarking , Electrocardiografía , Frecuencia Cardíaca , Humanos , Neuroimagen , Reproducibilidad de los ResultadosRESUMEN
Background: Near point of convergence (NPC) assesses the vergence ability of the visuo-oculomotor system; however, little is known regarding: the extent and duration exercise impacts NPC and the between- and within-day reliability of NPC metrics.Methods: An accommodative ruler with a miniature Snellen chart was placed upon the philtrum (upper lip). Participants (n=9) focused upon a 'V' sized 20/20, while the chart was moved at ~1-2 cm/s toward and away from the eyes (twice in each direction). Testing commenced at 8:00am with NPC measures being collected at baseline before three randomized conditions with serial follow-ups occurring at six post-condition timepoints (0-8 hours following). The conditions consisted of 25-minutes high-intensity intervals (10, one-minute intervals at ~85-90% heart-rate reserve), 45-minutes of moderate-intensity exercise (at ~50-60% heart-rate reserve), and a control condition (30-minutes quiet rest).Results: NPC was not impacted across any of the three conditions (all p > .59). Additionally, NPC measures between baseline conditions and across the control condition displayed very high levels of within-day and between-day reliability (coefficient of variation <3.8%).Conclusions: Future NPC measures using an accommodative ruler can be taken immediately following exercise and may be pertinent as a complementary tool in the future sideline screening of concussion.
Asunto(s)
Conmoción Encefálica , Estrabismo , Benchmarking , Ejercicio Físico , Humanos , Reproducibilidad de los ResultadosRESUMEN
OBJECTIVE: To determine the effects of repetitive subconcussive head trauma on neurovascular coupling (NVC) responses. DESIGN: Prospective cohort study collected between September 2013 and December 2016. SETTING: University laboratory. PARTICIPANTS: One hundred seventy-nine elite, junior-level (age, 19.6 ± 1.5 years) contact sport (ice hockey, American football) athletes recruited for preseason testing. Fifty-two nonconcussed athletes returned for postseason testing. Fifteen noncontact sport athletes (age, 20.4 ± 2.2 years) also completed preseason and postseason testing. EXPOSURE(S): Subconcussive sport-related head trauma. MAIN OUTCOME MEASURES: Dynamics of NVC were estimated during cycles of 20 seconds eyes closed and 40 seconds eyes open to a visual stimulus (reading) by measuring cerebral blood flow (CBF) velocity in the posterior (PCA) and middle (MCA) cerebral arteries via transcranial Doppler ultrasound. RESULTS: Both athlete groups demonstrated no significant differences in PCA or MCA NVC dynamics between preseason and postseason, despite exposure to a median of 353.5 (range, 295.0-587.3) head impacts (>2g) over the course of the season for contact sport athletes. CONCLUSIONS: Within the context of growing concern over detrimental effects of repetitive subconcussive trauma, the current results encouragingly suggest that the dynamics of NVC responses are not affected by 1 season of participation in junior-level ice hockey or American football. This is an important finding because it indicates an appropriate postseason CBF response to elevated metabolic demand with increases in neural activity.
Asunto(s)
Conmoción Encefálica/fisiopatología , Fútbol Americano/lesiones , Hockey/lesiones , Acoplamiento Neurovascular/fisiología , Análisis de Varianza , Atletas , Traumatismos en Atletas/diagnóstico por imagen , Traumatismos en Atletas/fisiopatología , Baloncesto/fisiología , Conmoción Encefálica/diagnóstico por imagen , Traumatismos Craneocerebrales/complicaciones , Traumatismos Craneocerebrales/fisiopatología , Humanos , Masculino , Estudios Prospectivos , Carrera/fisiología , Ultrasonografía Doppler/métodos , Adulto JovenRESUMEN
KEY POINTS: Chronic mountain sickness (CMS) is a maladaptation syndrome encountered at high altitude (HA) characterised by severe hypoxaemia that carries a higher risk of stroke and migraine and is associated with increased morbidity and mortality. We examined if exaggerated oxidative-inflammatory-nitrosative stress (OXINOS) and corresponding decrease in vascular nitric oxide bioavailability in patients with CMS (CMS+) is associated with impaired cerebrovascular function and adverse neurological outcome. Systemic OXINOS was markedly elevated in CMS+ compared to healthy HA (CMS-) and low-altitude controls. OXINOS was associated with blunted cerebral perfusion and vasoreactivity to hypercapnia, impaired cognition and, in CMS+, symptoms of depression. These findings are the first to suggest that a physiological continuum exists for hypoxaemia-induced systemic OXINOS in HA dwellers that when excessive is associated with accelerated cognitive decline and depression, helping identify those in need of more specialist neurological assessment and targeted support. ABSTRACT: Chronic mountain sickness (CMS) is a maladaptation syndrome encountered at high altitude (HA) characterised by severe hypoxaemia that carries a higher risk of stroke and migraine and is associated with increased morbidity and mortality. The present cross-sectional study examined to what extent exaggerated systemic oxidative-inflammatory-nitrosative stress (OXINOS), defined by an increase in free radical formation and corresponding decrease in vascular nitric oxide (NO) bioavailability, is associated with impaired cerebrovascular function, accelerated cognitive decline and depression in CMS. Venous blood was obtained from healthy male lowlanders (80 m, n = 17), and age- and gender-matched HA dwellers born and bred in La Paz, Bolivia (3600 m) with (CMS+, n = 23) and without (CMS-, n = 14) CMS. We sampled blood for oxidative (electron paramagnetic resonance spectroscopy, HPLC), nitrosative (ozone-based chemiluminescence) and inflammatory (fluorescence) biomarkers. We employed transcranial Doppler ultrasound to measure cerebral blood flow (CBF) and reactivity. We utilised psychometric tests and validated questionnaires to assess cognition and depression. Highlanders exhibited elevated systemic OXINOS (P < 0.05 vs. lowlanders) that was especially exaggerated in the more hypoxaemic CMS+ patients (P < 0.05 vs. CMS-). OXINOS was associated with blunted cerebral perfusion and vasoreactivity to hypercapnia, impaired cognition and, in CMS+, symptoms of depression. Collectively, these findings are the first to suggest that a physiological continuum exists for hypoxaemia-induced OXINOS in HA dwellers that when excessive is associated with accelerated cognitive decline and depression, helping identify those in need of specialist neurological assessment and support.
Asunto(s)
Mal de Altura , Disfunción Cognitiva , Depresión , Estrés Nitrosativo , Estrés Oxidativo , Adulto , Anciano , Mal de Altura/sangre , Mal de Altura/metabolismo , Mal de Altura/fisiopatología , Circulación Cerebrovascular , Enfermedad Crónica , Disfunción Cognitiva/sangre , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Depresión/sangre , Depresión/metabolismo , Depresión/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Pruebas NeuropsicológicasRESUMEN
This study examined cerebral blood flow (CBF) and its regulation before and after a short-term periodized aerobic exercise training intervention in patients with chronic obstructive pulmonary disease (COPD). Twenty-eight patients with COPD (forced expiratory volume in 1 s/forced vital capacity < 0.7 and Asunto(s)
Circulación Cerebrovascular
, Terapia por Ejercicio/métodos
, Enfermedad Pulmonar Obstructiva Crónica/fisiopatología
, Anciano
, Anciano de 80 o más Años
, Encéfalo/irrigación sanguínea
, Encéfalo/diagnóstico por imagen
, Femenino
, Humanos
, Masculino
, Persona de Mediana Edad
, Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen
, Enfermedad Pulmonar Obstructiva Crónica/terapia