Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Neurocrit Care ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955931

RESUMEN

BACKGROUND: Life-threatening, space-occupying mass effect due to cerebral edema and/or hemorrhagic transformation is an early complication of patients with middle cerebral artery stroke. Little is known about longitudinal trajectories of laboratory and vital signs leading up to radiographic and clinical deterioration related to this mass effect. METHODS: We curated a retrospective data set of 635 patients with large middle cerebral artery stroke totaling 95,463 data points for 10 longitudinal covariates and 40 time-independent covariates. We assessed trajectories of the 10 longitudinal variables during the 72 h preceding three outcomes representative of life-threatening mass effect: midline shift ≥ 5 mm, pineal gland shift (PGS) > 4 mm, and decompressive hemicraniectomy (DHC). We used a "backward-looking" trajectory approach. Patients were aligned based on outcome occurrence time and the trajectory of each variable was assessed before that outcome by accounting for cases and noncases, adjusting for confounders. We evaluated longitudinal trajectories with Cox proportional time-dependent regression. RESULTS: Of 635 patients, 49.0% were female, and the mean age was 69 years. Thirty five percent of patients had midline shift ≥ 5 mm, 24.3% of patients had PGS > 4 mm, and 10.7% of patients underwent DHC. Backward-looking trajectories showed mild increases in white blood cell count (10-11 K/UL within 72 h), temperature (up to half a degree within 24 h), and sodium levels (1-3 mEq/L within 24 h) before the three outcomes of interest. We also observed a decrease in heart rate (75-65 beats per minute) 24 h before DHC. We found a significant association between increased white blood cell count with PGS > 4 mm (hazard ratio 1.05, p value 0.007). CONCLUSIONS: Longitudinal profiling adjusted for confounders demonstrated that white blood cell count, temperature, and sodium levels appear to increase before radiographic and clinical indicators of space-occupying mass effect. These findings will inform the development of multivariable dynamic risk models to aid prediction of life-threatening, space-occupying mass effect.

2.
J Neurosci ; 42(33): 6469-6482, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35831173

RESUMEN

Atypical sensory processing is now thought to be a core feature of the autism spectrum. Influential theories have proposed that both increased and decreased neural response reliability within sensory systems could underlie altered sensory processing in autism. Here, we report evidence for abnormally increased reliability of visual-evoked responses in layer 2/3 neurons of adult male and female primary visual cortex in the MECP2-duplication syndrome animal model of autism. Increased response reliability was due in part to decreased response amplitude, decreased fluctuations in endogenous activity, and an abnormal decoupling of visual-evoked activity from endogenous activity. Similar to what was observed neuronally, the optokinetic reflex occurred more reliably at low contrasts in mutant mice compared with controls. Retinal responses did not explain our observations. These data suggest that the circuit mechanisms for combining sensory-evoked and endogenous signal and noise processes may be altered in this form of syndromic autism.SIGNIFICANCE STATEMENT Atypical sensory processing is now thought to be a core feature of the autism spectrum. Influential theories have proposed that both increased and decreased neural response reliability within sensory systems could underlie altered sensory processing in autism. Here, we report evidence for abnormally increased reliability of visual-evoked responses in primary visual cortex of the animal model for MECP2-duplication syndrome, a high-penetrance single-gene cause of autism. Visual-evoked activity was abnormally decoupled from endogenous activity in mutant mice, suggesting in line with the influential "hypo-priors" theory of autism that sensory priors embedded in endogenous activity may have less influence on perception in autism.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Animales , Trastorno Autístico/genética , Modelos Animales de Enfermedad , Potenciales Evocados Visuales , Femenino , Masculino , Discapacidad Intelectual Ligada al Cromosoma X , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Corteza Visual Primaria , Reproducibilidad de los Resultados
3.
Crit Care Med ; 50(2): e143-e153, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34637415

RESUMEN

OBJECTIVES: To describe the prevalence and associated risk factors of new onset anisocoria (new pupil size difference of at least 1 mm) and its subtypes: new onset anisocoria accompanied by abnormal and normal pupil reactivities in patients with acute neurologic injuries. DESIGN: We tested the association of patients who experienced new onset anisocoria subtypes with degree of midline shift using linear regression. We further explored differences between quantitative pupil characteristics associated with first-time new onset anisocoria and nonnew onset anisocoria at preceding observations using mixed effects logistic regression, adjusting for possible confounders. SETTING: All quantitative pupil observations were collected at two neuro-ICUs by nursing staff as standard of care. PATIENTS: We conducted a retrospective two-center study of adult patients with intracranial pathology in the ICU with at least a 24-hour stay and three or more quantitative pupil measurements between 2016 and 2018. MEASUREMENTS AND MAIN RESULTS: We studied 221 patients (mean age 58, 41% women). Sixty-three percent experienced new onset anisocoria. New onset anisocoria accompanied by objective evidence of abnormal pupil reactivity occurring at any point during hospitalization was significantly associated with maximum midline shift (ß = 2.27 per mm; p = 0.01). The occurrence of new onset anisocoria accompanied by objective evidence of normal pupil reactivity was inversely associated with death (odds ratio, 0.34; 95% CI, 0.16-0.71; p = 0.01) in adjusted analyses. Subclinical continuous pupil size difference distinguished first-time new onset anisocoria from nonnew onset anisocoria in up to four preceding pupil observations (or up to 8 hr prior). Minimum pupil reactivity between eyes also distinguished new onset anisocoria accompanied by objective evidence of abnormal pupil reactivity from new onset anisocoria accompanied by objective evidence of normal pupil reactivity prior to first-time new onset anisocoria occurrence. CONCLUSIONS: New onset anisocoria occurs in over 60% of patients with neurologic emergencies. Pupil reactivity may be an important distinguishing characteristic of clinically relevant new onset anisocoria phenotypes. New onset anisocoria accompanied by objective evidence of abnormal pupil reactivity was associated with midline shift, and new onset anisocoria accompanied by objective evidence of normal pupil reactivity had an inverse relationship with death. Distinct quantitative pupil characteristics precede new onset anisocoria occurrence and may allow for earlier prediction of neurologic decline. Further work is needed to determine whether quantitative pupillometry sensitively/specifically predicts clinically relevant anisocoria, enabling possible earlier treatments.


Asunto(s)
Anisocoria/complicaciones , Encéfalo/patología , Reflejo Pupilar/fisiología , Adulto , Anisocoria/epidemiología , Encéfalo/fisiopatología , Estudios de Cohortes , Femenino , Humanos , Unidades de Cuidados Intensivos/organización & administración , Unidades de Cuidados Intensivos/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
4.
Proc Natl Acad Sci U S A ; 116(13): 6425-6434, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30867291

RESUMEN

The noninvasive estimation of neuronal receptive field (RF) properties in vivo allows a detailed understanding of brain organization as well as its plasticity by longitudinal following of potential changes. Visual RFs measured invasively by electrophysiology in animal models have traditionally provided a great extent of our current knowledge about the visual brain and its disorders. Voxel-based estimates of population RF (pRF) by functional magnetic resonance imaging (fMRI) in humans revolutionized the field and have been used extensively in numerous studies. However, current methods cannot estimate single-neuron RF sizes as they reflect large populations of neurons with individual RF scatter. Here, we introduce an approach to estimate RF size using spatial frequency selectivity to checkerboard patterns. This method allowed us to obtain noninvasive, average single-neuron RF estimates over a large portion of human early visual cortex. These estimates were significantly smaller compared with prior pRF methods. Furthermore, fMRI and electrophysiology experiments in nonhuman primates demonstrated an exceptionally good match, validating the approach.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Neuronas/citología , Neuronas/fisiología , Corteza Visual/fisiología , Animales , Mapeo Encefálico/métodos , Simulación por Computador , Electrofisiología/métodos , Femenino , Humanos , Masculino , Modelos Animales , Corteza Visual/diagnóstico por imagen , Campos Visuales/fisiología
5.
Neurocrit Care ; 37(Suppl 2): 291-302, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35534660

RESUMEN

BACKGROUND: Abstraction of critical data from unstructured radiologic reports using natural language processing (NLP) is a powerful tool to automate the detection of important clinical features and enhance research efforts. We present a set of NLP approaches to identify critical findings in patients with acute ischemic stroke from radiology reports of computed tomography (CT) and magnetic resonance imaging (MRI). METHODS: We trained machine learning classifiers to identify categorical outcomes of edema, midline shift (MLS), hemorrhagic transformation, and parenchymal hematoma, as well as rule-based systems (RBS) to identify intraventricular hemorrhage (IVH) and continuous MLS measurements within CT/MRI reports. Using a derivation cohort of 2289 reports from 550 individuals with acute middle cerebral artery territory ischemic strokes, we externally validated our models on reports from a separate institution as well as from patients with ischemic strokes in any vascular territory. RESULTS: In all data sets, a deep neural network with pretrained biomedical word embeddings (BioClinicalBERT) achieved the highest discrimination performance for binary prediction of edema (area under precision recall curve [AUPRC] > 0.94), MLS (AUPRC > 0.98), hemorrhagic conversion (AUPRC > 0.89), and parenchymal hematoma (AUPRC > 0.76). BioClinicalBERT outperformed lasso regression (p < 0.001) for all outcomes except parenchymal hematoma (p = 0.755). Tailored RBS for IVH and continuous MLS outperformed BioClinicalBERT (p < 0.001) and linear regression, respectively (p < 0.001). CONCLUSIONS: Our study demonstrates robust performance and external validity of a core NLP tool kit for identifying both categorical and continuous outcomes of ischemic stroke from unstructured radiographic text data. Medically tailored NLP methods have multiple important big data applications, including scalable electronic phenotyping, augmentation of clinical risk prediction models, and facilitation of automatic alert systems in the hospital setting.


Asunto(s)
Accidente Cerebrovascular Isquémico , Radiología , Hematoma , Humanos , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Aprendizaje Automático , Procesamiento de Lenguaje Natural
6.
J Neurosci ; 39(25): 4931-4944, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-30979814

RESUMEN

Neuronal circuits often display small-world network architecture characterized by neuronal cliques of dense local connectivity communicating with each other through a limited number of cells that participate in multiple cliques. The principles by which such cliques organize to encode information remain poorly understood. Similarly tuned pyramidal cells that preferentially target each other may form multicellular encoding units performing distinct computational tasks. The existence of such units can reflect upon both spontaneous and stimulus-driven population events.We applied two-photon calcium imaging to study spontaneous population bursts in layer 2/3 of area V1 in male C57BL/6 mice. To identify potential small-world cliques, we searched for pyramidal cells whose calcium events had a consistent temporal relationship with the events of local inhibitory interneurons. This was guided by the intuition that groups of neurons whose synchronous firing represents a temporally coherent computational unit should be inhibited together. Pyramidal members of these interneuron-centered clusters on average displayed stronger functional connectivity between each other than with nonmember pyramidal neurons. The structure of the clusters evolved during postnatal development: cluster size and overlap between clusters decreased with developmental maturation. Pyramidal neurons in a cluster showed higher than chance tuning function similarity between each other and with the linked interneuron. Thus, spontaneous population events in V1 are shaped by small-world subnetworks of pyramidal neurons that share functional properties and work as a coherent unit with a local interneuron. These interneuron-pyramidal cell partnerships may represent a fundamental neocortical unit of computation at the population level.SIGNIFICANCE STATEMENT Neuronal circuit in layer 2/3 of mouse area V1 possesses small-world network architecture, where cliques of densely interconnected neurons ("small worlds") communicate via restricted number of hub cells. We show that: (1) in mouse V1 individual small-world cliques preferably incorporate pyramidal neurons with similar visual feature tuning, and (2) ongoing population activity of such pyramidal neuron clique is temporally linked to the activity of the local interneuron sharing its feature tuning with the clique members. Functional grouping of similarly tuned interneurons and pyramidal cells into cliques may ensure that ensembles of functionally alike pyramidal cells recruited during perceptual tasks and spontaneous activity are also turned off together as a unit, with interneurons serving as organizers of linked pyramidal ensemble activity.


Asunto(s)
Potenciales de Acción/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Corteza Visual/fisiología , Animales , Interneuronas/fisiología , Masculino , Ratones , Imagen Óptica , Estimulación Luminosa , Células Piramidales/fisiología
7.
J Neurosci ; 39(9): 1671-1687, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30647148

RESUMEN

Neurons in primary visual cortex are strongly modulated both by stimulus contrast and by fluctuations of internal inputs. An important question is whether the population code is preserved under these conditions. Changes in stimulus contrast are thought to leave the population code invariant, whereas the effect of internal gain modulations remains unknown. To address these questions we studied how the direction-of-motion of oriented gratings is encoded in layer 2/3 primary visual cortex of mouse (with C57BL/6 background, of either sex). We found that, because contrast gain responses across cells are heterogeneous, a change in contrast alters the information distribution profile across cells leading to a violation of contrast invariance. Remarkably, internal input fluctuations that cause commensurate firing rate modulations at the single-cell level result in more homogeneous gain responses, respecting population code invariance. These observations argue that the brain strives to maintain the stability of the neural code in the face of fluctuating internal inputs.SIGNIFICANCE STATEMENT Neuronal responses are modulated both by stimulus contrast and by the spontaneous fluctuation of internal inputs. It is not well understood how these different types of input impact the population code. Specifically, it is important to understand whether the neural code stays invariant in the face of significant internal input modulations. Here, we show that changes in stimulus contrast lead to different optimal population codes, whereas spontaneous internal input fluctuations leave the population code invariant. This is because spontaneous internal input fluctuations modulate the gain of neuronal responses more homogeneously across cells compared to changes in stimulus contrast.


Asunto(s)
Corteza Visual/fisiología , Percepción Visual , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Neuronas/fisiología , Corteza Visual/citología
8.
Neuroimage ; 190: 254-268, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29627591

RESUMEN

Damage to the primary visual cortex (V1) leads to a visual field loss (scotoma) in the retinotopically corresponding part of the visual field. Nonetheless, a small amount of residual visual sensitivity persists within the blind field. This residual capacity has been linked to activity observed in the middle temporal area complex (V5/MT+). However, it remains unknown whether the organization of hV5/MT+ changes following early visual cortical lesions. We studied the organization of area hV5/MT+ of five patients with dense homonymous defects in a quadrant of the visual field as a result of partial V1+ or optic radiation lesions. To do so, we developed a new method, which models the boundaries of population receptive fields directly from the BOLD signal of each voxel in the visual cortex. We found responses in hV5/MT+ arising inside the scotoma for all patients and identified two possible sources of activation: 1) responses might originate from partially lesioned parts of area V1 corresponding to the scotoma, and 2) responses can also originate independent of area V1 input suggesting the existence of functional V1-bypassing pathways. Apparently, visually driven activity observed in hV5/MT+ is not sufficient to mediate conscious vision. More surprisingly, visually driven activity in corresponding regions of V1 and early extrastriate areas including hV5/MT+ did not guarantee visual perception in the group of patients with post-geniculate lesions that we examined. This suggests that the fine coordination of visual activity patterns across visual areas may be an important determinant of whether visual perception persists following visual cortical lesions.


Asunto(s)
Escotoma , Trastornos de la Visión , Corteza Visual , Campos Visuales/fisiología , Vías Visuales , Percepción Visual/fisiología , Adulto , Imagen Eco-Planar , Femenino , Neuroimagen Funcional , Humanos , Masculino , Persona de Mediana Edad , Escotoma/diagnóstico por imagen , Escotoma/fisiopatología , Accidente Cerebrovascular/complicaciones , Trastornos de la Visión/diagnóstico por imagen , Trastornos de la Visión/etiología , Trastornos de la Visión/patología , Trastornos de la Visión/fisiopatología , Corteza Visual/diagnóstico por imagen , Corteza Visual/patología , Corteza Visual/fisiopatología , Vías Visuales/diagnóstico por imagen , Vías Visuales/patología , Vías Visuales/fisiopatología
9.
J Neurosci ; 37(1): 164-183, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-28053039

RESUMEN

Rodent visual cortex has a hierarchical architecture similar to that of higher mammals (Coogan and Burkhalter, 1993; Marshel et al., 2011; Wang et al., 2012). Although notable differences exist between the species in terms or receptive field sizes and orientation map organization (Dräger, 1975; Gattass et al., 1987; Van den Bergh et al., 2010), mouse V1 is thought to respond to local orientation and visual motion elements rather than to global patterns of motion, similar to V1 in higher mammals (Niell and Stryker, 2008; Bonin et al., 2011). However, recent results are inconclusive: some argue mouse V1 is analogous to monkey V1 (Juavinett and Callaway, 2015); others argue that it displays complex motion responses (Muir et al., 2015). We used type I plaids formed by the additive superposition of moving gratings (Adelson and Movshon, 1982; Movshon et al., 1985; Albright and Stoner, 1995) to investigate this question. We show that mouse V1 contains a considerably smaller fraction of component-motion-selective neurons (∼17% vs ∼84%), and a larger fraction of pattern-motion-selective neurons (∼10% vs <1.3%) compared with primate/cat V1. The direction of optokinetic nystagmus correlates with visual perception in higher mammals (Fox et al., 1975; Logothetis and Schall, 1990; Wei and Sun, 1998; Watanabe, 1999; Naber et al., 2011). Measurement of optokinetic responses to plaid stimuli revealed that mice demonstrate bistable perception, sometimes tracking individual stimulus components and others the global pattern of motion. Moreover, bistable optokinetic responses cannot be entirely attributed to subcortical circuitry as V1 lesions alter the fraction of responses occurring along pattern versus component motion. These observations suggest that area V1 input contributes to complex motion perception in the mouse. SIGNIFICANCE STATEMENT: Area V1 in the mouse is hierarchically similar but not necessarily identical to area V1 in cats and primates. Here we demonstrate that area V1 neurons process complex motion plaid stimuli differently in mice versus in cats or primates. Specifically, a smaller proportion of mouse V1 cells are sensitive to component motion, and a larger proportion to pattern motion than are found in area V1 of cats/primates. Furthermore, we demonstrate for the first time that mice exhibit bistable visual perception of plaid stimuli, and that this depends, at least in part, on area V1 input. Finally, we suggest that the relative proportion of component-motion-selective responses to pattern-motion-selective responses in mouse V1 may bias visual perception, as evidenced by changes in the direction of elicited optokinetic responses.


Asunto(s)
Percepción de Movimiento/fisiología , Corteza Visual/fisiología , Percepción Visual/fisiología , Animales , Mapeo Encefálico , Señalización del Calcio/fisiología , Gatos , Ratones , Ratones Endogámicos C57BL , Nistagmo Optoquinético/fisiología , Técnicas de Placa-Clamp , Reconocimiento Visual de Modelos/fisiología , Estimulación Luminosa , Primates , Células Piramidales/fisiología , Vías Visuales/fisiología
10.
Proc Natl Acad Sci U S A ; 111(16): E1656-65, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24706881

RESUMEN

Injury to the primary visual cortex (V1) typically leads to loss of conscious vision in the corresponding, homonymous region of the contralateral visual hemifield (scotoma). Several studies suggest that V1 is highly plastic after injury to the visual pathways, whereas others have called this conclusion into question. We used functional magnetic resonance imaging (fMRI) to measure area V1 population receptive field (pRF) properties in five patients with partial or complete quadrantic visual field loss as a result of partial V1+ or optic radiation lesions. Comparisons were made with healthy controls deprived of visual stimulation in one quadrant ["artificial scotoma" (AS)]. We observed no large-scale changes in spared-V1 topography as the V1/V2 border remained stable, and pRF eccentricity versus cortical-distance plots were similar to those of controls. Interestingly, three observations suggest limited reorganization: (i) the distribution of pRF centers in spared-V1 was shifted slightly toward the scotoma border in 2 of 5 patients compared with AS controls; (ii) pRF size in spared-V1 was slightly increased in patients near the scotoma border; and (iii) pRF size in the contralesional hemisphere was slightly increased compared with AS controls. Importantly, pRF measurements yield information about the functional properties of spared-V1 cortex not provided by standard perimetry mapping. In three patients, spared-V1 pRF maps overlapped significantly with dense regions of the perimetric scotoma, suggesting that pRF analysis may help identify visual field locations amenable to rehabilitation. Conversely, in the remaining two patients, spared-V1 pRF maps failed to cover sighted locations in the perimetric map, indicating the existence of V1-bypassing pathways able to mediate useful vision.


Asunto(s)
Ceguera/fisiopatología , Corteza Visual/fisiopatología , Pruebas del Campo Visual , Campos Visuales/fisiología , Ceguera/patología , Mapeo Encefálico , Humanos , Retina/patología , Retina/fisiopatología , Escotoma/patología , Escotoma/fisiopatología , Corteza Visual/patología
12.
Neuroimage ; 120: 176-90, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26146195

RESUMEN

There is extensive controversy over whether the adult visual cortex is able to reorganize following visual field loss (scotoma) as a result of retinal or cortical lesions. Functional magnetic resonance imaging (fMRI) methods provide a useful tool to study the aggregate receptive field properties and assess the capacity of the human visual cortex to reorganize following injury. However, these methods are prone to biases near the boundaries of the scotoma. Retinotopic changes resembling reorganization have been observed in the early visual cortex of normal subjects when the visual stimulus is masked to simulate retinal or cortical scotomas. It is not known how the receptive fields of higher visual areas, like hV5/MT+, are affected by partial stimulus deprivation. We measured population receptive field (pRF) responses in human area V5/MT+ of 5 healthy participants under full stimulation and compared them with responses obtained from the same area while masking the left superior quadrant of the visual field ("artificial scotoma" or AS). We found that pRF estimations in area hV5/MT+ are nonlinearly affected by the AS. Specifically, pRF centers shift towards the AS, while the pRF amplitude increases and the pRF size decreases near the AS border. The observed pRF changes do not reflect reorganization but reveal important properties of normal visual processing under different test-stimulus conditions.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Reconocimiento Visual de Modelos/fisiología , Escotoma/fisiopatología , Corteza Visual/fisiología , Campos Visuales/fisiología , Adulto , Anciano , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
13.
Neurocrit Care ; 22(3): 337-47, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25846709

RESUMEN

Effective methods of monitoring the status of patients with neurological injuries began with non-invasive observations and evolved during the past several decades to include more invasive monitoring tools and physiologic measures. The monitoring paradigm continues to evolve, this time back toward the use of less invasive tools. In parallel, the science of monitoring began with the global assessment of the patient's neurological condition, evolved to focus on regional monitoring techniques, and with the advent of enhanced computing capabilities is now moving back to focus on global monitoring. The purpose of this session of the Second Neurocritical Care Research Conference was to collaboratively develop a comprehensive understanding of the state of the science for global brain monitoring and to identify research priorities for intracranial pressure monitoring, neuroimaging, and neuro-electrophysiology monitoring.


Asunto(s)
Cuidados Críticos , Monitorización Neurofisiológica , Encefalopatías/diagnóstico , Encefalopatías/fisiopatología , Encefalopatías/terapia , Humanos
14.
J Stroke Cerebrovasc Dis ; 24(6): 1256-61, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25920753

RESUMEN

BACKGROUND: The door-to-computed tomography (CT) head reporting time is an essential step to determining eligibility for thrombolysis in acute stroke patients, but the specific components of the process have not been reported in detail. METHODS: We performed a retrospective cross-sectional analysis of the prospectively collected Get-With-The-Guidelines database in our comprehensive stroke center to evaluate the effect of a structured multidisciplinary protocol on head CT times in acute stroke patients under consideration for thrombolysis. RESULTS: The median CT turnaround time in the first 6-month period was 27 (interquartile range [IQR], 27) and decreased in all subsequent periods after implementation of a formal protocol to 18 (IQR, 12; range, 17-20 minutes; P < .0001 for all pairwise comparisons). The median CT turnaround time was 18 (IQR, 12) versus 20 (IQR, 14) minutes for patients with admission diagnosis of stroke (n = 1123) versus nonstroke (n = 685; P < .0001), respectively. CONCLUSIONS: A structured multidisciplinary protocol for obtaining acute stroke protocol head CT scan was associated with reduced CT turnaround time over the study period. Prospective studies should be done to determine if implementation in other stroke centers confirms the effectiveness of our protocol.


Asunto(s)
Isquemia Encefálica/diagnóstico por imagen , Accidente Cerebrovascular/diagnóstico por imagen , Isquemia Encefálica/tratamiento farmacológico , Angiografía Cerebral/métodos , Protocolos Clínicos , Estudios Transversales , Fibrinolíticos/uso terapéutico , Humanos , Estudios Retrospectivos , Accidente Cerebrovascular/tratamiento farmacológico , Terapia Trombolítica/métodos , Factores de Tiempo , Tiempo de Tratamiento , Activador de Tejido Plasminógeno/uso terapéutico
15.
J Neurosci ; 33(50): 19518-33, 2013 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-24336718

RESUMEN

MECP2 duplication syndrome is a childhood neurological disorder characterized by intellectual disability, autism, motor abnormalities, and epilepsy. The disorder is caused by duplications spanning the gene encoding methyl-CpG-binding protein-2 (MeCP2), a protein involved in the modulation of chromatin and gene expression. MeCP2 is thought to play a role in maintaining the structural integrity of neuronal circuits. Loss of MeCP2 function causes Rett syndrome and results in abnormal dendritic spine morphology and decreased pyramidal dendritic arbor complexity and spine density. The consequences of MeCP2 overexpression on dendritic pathophysiology remain unclear. We used in vivo two-photon microscopy to characterize layer 5 pyramidal neuron spine turnover and dendritic arborization as a function of age in transgenic mice expressing the human MECP2 gene at twice the normal levels of MeCP2 (Tg1; Collins et al., 2004). We found that spine density in terminal dendritic branches is initially higher in young Tg1 mice but falls below control levels after postnatal week 12, approximately correlating with the onset of behavioral symptoms. Spontaneous spine turnover rates remain high in older Tg1 animals compared with controls, reflecting the persistence of an immature state. Both spine gain and loss rates are higher, with a net bias in favor of spine elimination. Apical dendritic arbors in both simple- and complex-tufted layer 5 Tg1 pyramidal neurons have more branches of higher order, indicating that MeCP2 overexpression induces dendritic overgrowth. P70S6K was hyperphosphorylated in Tg1 somatosensory cortex, suggesting that elevated mTOR signaling may underlie the observed increase in spine turnover and dendritic growth.


Asunto(s)
Dendritas/metabolismo , Espinas Dendríticas/metabolismo , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Animales , Modelos Animales de Enfermedad , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/fisiopatología , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Neuronas/metabolismo , Corteza Somatosensorial/metabolismo , Corteza Somatosensorial/fisiopatología
16.
Nat Rev Neurosci ; 10(12): 873-84, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19904279

RESUMEN

It is important to understand the balance between cortical plasticity and stability in various systems and across spatial scales in the adult brain. Here we review studies of adult plasticity in primary visual cortex (V1), which has a key role in distributing visual information. There are claims of plasticity at multiple spatial scales in adult V1, but a number of inconsistencies in the supporting data raise questions about the extent and nature of such plasticity. Our understanding of the extent of plasticity in V1 is further limited by a lack of quantitative models to guide the interpretation of the data. These problems limit efforts to translate research findings about adult cortical plasticity into significant clinical, educational and policy applications.


Asunto(s)
Plasticidad Neuronal/fisiología , Corteza Visual/fisiología , Campos Visuales/fisiología , Adulto , Animales , Mapeo Encefálico , Humanos , Estimulación Luminosa , Visión Binocular/fisiología , Visión Monocular/fisiología , Corteza Visual/crecimiento & desarrollo
17.
eNeuro ; 11(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37940561

RESUMEN

Extracting common patterns of neural circuit computations in the autism spectrum and confirming them as a cause of specific core traits of autism is the first step toward identifying cell-level and circuit-level targets for effective clinical intervention. Studies in humans with autism have identified functional links and common anatomic substrates between core restricted behavioral repertoire, cognitive rigidity, and overstability of visual percepts during visual rivalry. To study these processes with single-cell precision and comprehensive neuronal population coverage, we developed the visual bistable perception paradigm for mice based on ambiguous moving plaid patterns consisting of two transparent gratings drifting at an angle of 120°. This results in spontaneous reversals of the perception between local component motion (plaid perceived as two separate moving grating components) and integrated global pattern motion (plaid perceived as a fused moving texture). This robust paradigm does not depend on the explicit report of the mouse, since the direction of the optokinetic nystagmus (OKN) is used to infer the dominant percept. Using this paradigm, we found that the rate of perceptual reversals between global and local motion interpretations is reduced in the methyl-CpG-binding protein 2 duplication syndrome (MECP2-ds) mouse model of autism. Moreover, the stability of local motion percepts is greatly increased in MECP2-ds mice at the expense of global motion percepts. Thus, our model reproduces a subclass of the core features in human autism (reduced rate of visual rivalry and atypical perception of visual motion). This further offers a well-controlled approach for dissecting neuronal circuits underlying these core features.


Asunto(s)
Trastorno Autístico , Discapacidad Intelectual Ligada al Cromosoma X , Percepción de Movimiento , Animales , Humanos , Ratones , Trastorno Autístico/genética , Movimientos Oculares , Percepción de Movimiento/fisiología , Estimulación Luminosa/métodos , Percepción Visual/fisiología
18.
Neuro Oncol ; 26(2): 323-334, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-37713468

RESUMEN

BACKGROUND: Distinct genetic alterations determine glioma aggressiveness, however, the diversity of somatic mutations contributing to peritumoral hyperexcitability and seizures over the course of the disease is uncertain. This study aimed to identify tumor somatic mutation profiles associated with clinically significant hyperexcitability. METHODS: A single center cohort of adults with WHO grades 1-4 glioma and targeted exome sequencing (n = 1716) was analyzed and cross-referenced with a validated EEG database to identify the subset of individuals who underwent continuous EEG monitoring (n = 206). Hyperexcitability was defined by the presence of lateralized periodic discharges and/or electrographic seizures. Cross-validated discriminant analysis models trained exclusively on recurrent somatic mutations were used to identify variants associated with hyperexcitability. RESULTS: The distribution of WHO grades and tumor mutational burdens were similar between patients with and without hyperexcitability. Discriminant analysis models classified the presence or absence of EEG hyperexcitability with an overall accuracy of 70.9%, regardless of IDH1 R132H inclusion. Predictive variants included nonsense mutations in ATRX and TP53, indel mutations in RBBP8 and CREBBP, and nonsynonymous missense mutations with predicted damaging consequences in EGFR, KRAS, PIK3CA, TP53, and USP28. This profile improved estimates of hyperexcitability in a multivariate analysis controlling for age, sex, tumor location, integrated pathologic diagnosis, recurrence status, and preoperative epilepsy. Predicted somatic mutation variants were over-represented in patients with hyperexcitability compared to individuals without hyperexcitability and those who did not undergo continuous EEG. CONCLUSION: These findings implicate diverse glioma somatic mutations in cancer genes associated with peritumoral hyperexcitability. Tumor genetic profiling may facilitate glioma-related epilepsy prognostication and management.


Asunto(s)
Neoplasias Encefálicas , Epilepsia , Glioma , Adulto , Humanos , Neoplasias Encefálicas/patología , Perfil Genético , Glioma/patología , Mutación , Convulsiones , Ubiquitina Tiolesterasa/genética
19.
Res Sq ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38699310

RESUMEN

Background/Objective: Space occupying cerebral edema is the most feared early complication after large ischemic stroke, occurring in up to 30% of patients with middle cerebral artery (MCA) occlusion, and is reported to peak 2-4 days after injury. Little is known about the factors and outcomes associated with peak edema timing, especially when it occurs after 96 hours. We aimed to characterize differences between patients who experienced maximum midline shift (MLS) or decompressive hemicraniectomy (DHC) in the acute (<48 hours), average (48-96 hours), and subacute (>96 hours) groups and determine whether patients with subacute peak edema timing have improved discharge dispositions. Methods: We performed a two-center, retrospective study of patients with ≥1/2 MCA territory infarct and MLS. We constructed a multivariable model to test the association of subacute peak edema and favorable discharge disposition, adjusting for age, admission Alberta Stroke Program Early CT Score (ASPECTS), National Institute of Health Stroke Scale (NIHSS), acute thrombolytic intervention, cerebral atrophy, maximum MLS, parenchymal hemorrhagic transformation, DHC, and osmotic therapy receipt. Results: Of 321 eligible patients with MLS, 32%, 36%, and 32% experienced acute, average, and subacute peak edema. Subacute peak edema was significantly associated with higher odds of favorable discharge than non-subacute swelling, adjusting for confounders (aOR, 1.85; 95% CI, 1.05-3.31). Conclusions: Subacute peak edema after large MCA stroke is associated with better discharge disposition compared to earlier peak edema courses. Understanding how the timing of cerebral edema affects risk of unfavorable discharge has important implications for treatment decisions and prognostication.

20.
Sci Rep ; 14(1): 10008, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693282

RESUMEN

Historically, investigators have not differentiated between patients with and without hemorrhagic transformation (HT) in large core ischemic stroke at risk for life-threatening mass effect (LTME) from cerebral edema. Our objective was to determine whether LTME occurs faster in those with HT compared to those without. We conducted a two-center retrospective study of patients with ≥ 1/2 MCA territory infarct between 2006 and 2021. We tested the association of time-to-LTME and HT subtype (parenchymal, petechial) using Cox regression, controlling for age, mean arterial pressure, glucose, tissue plasminogen activator, mechanical thrombectomy, National Institute of Health Stroke Scale, antiplatelets, anticoagulation, temperature, and stroke side. Secondary and exploratory outcomes included mass effect-related death, all-cause death, disposition, and decompressive hemicraniectomy. Of 840 patients, 358 (42.6%) had no HT, 403 (48.0%) patients had petechial HT, and 79 (9.4%) patients had parenchymal HT. LTME occurred in 317 (37.7%) and 100 (11.9%) had mass effect-related deaths. Parenchymal (HR 8.24, 95% CI 5.46-12.42, p < 0.01) and petechial HT (HR 2.47, 95% CI 1.92-3.17, p < 0.01) were significantly associated with time-to-LTME and mass effect-related death. Understanding different risk factors and sequelae of mass effect with and without HT is critical for informed clinical decisions.


Asunto(s)
Hospitalización , Infarto de la Arteria Cerebral Media , Humanos , Femenino , Masculino , Anciano , Estudios Retrospectivos , Persona de Mediana Edad , Infarto de la Arteria Cerebral Media/complicaciones , Hemorragia Cerebral/etiología , Hemorragia Cerebral/mortalidad , Hemorragia Cerebral/complicaciones , Edema Encefálico/etiología , Factores de Riesgo , Accidente Cerebrovascular Isquémico/mortalidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA