Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117460

RESUMEN

Lenacapavir (LEN), a long-acting injectable, is the first approved human immunodeficiency virus type 1 capsid inhibitor and one of a few FDA-approved drugs that exhibit atropisomerism. LEN exists as a mixture of two class 2 atropisomers that interconvert at a fast rate (t1/2 <2 hours) with a ratio that is stable over time and unaffected by enzymes or binding to proteins in plasma. LEN exhibits low systemic clearance (CL) in nonclinical species and humans; however, in all species the observed CL was higher than the in vitro predicted CL. The volume of distribution was moderate in nonclinical species and consistent with the tissue distribution observed by whole body autoradiography in rats. LEN does not distribute to brain, consistent with being a P-glycoprotein (P-gp) substrate. Mechanistic drug disposition studies with [14C]LEN in IV-dosed BDC rats and dogs showed a substantial amount of unchanged LEN (31 - 60% of dose) excreted in feces, indicating that intestinal excretion (IE) was a major clearance pathway for LEN in both species. Coadministration of oral elacridar, a P-gp inhibitor, in rats decreased CL and IE of LEN. Renal excretion was <1% of dose in both species. In plasma, almost all radioactivity was unchanged LEN. Low levels of metabolites in excreta included LEN-conjugates with glutathione, pentose, and glucuronic acid, which were consistent with metabolites formed in vitro in Hµrel® hepatocyte co­cultures and those observed in human. Our studies highlight the importance of IE for efflux substrates that are highly metabolically stable compounds with slow elimination rates. Significance Statement LEN is a long-acting injectable that exists as conformationally stable atropisomers. Due to an atropisomeric interconversion rate that significantly exceeds the in vivo elimination rate, the atropisomer ratio of LEN remains constant in circulation. The disposition of LEN highlights that intestinal excretion has a substantial part in the elimination of compounds that are metabolically highly stable and efflux transporter substrates.

2.
Mol Pharm ; 21(6): 2740-2750, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38717252

RESUMEN

Despite the increasing importance of aldehyde oxidase (AO) in the drug metabolism of clinical candidates, ontogeny data for AO are limited. The objective of our study was to characterize the age-dependent AO content and activity in the human liver cytosolic fraction (HLC) and human hepatocytes (HH). HLC (n = 121 donors) and HH (n = 50 donors) were analyzed for (1) AO protein content by quantitative proteomics and (2) enzyme activity using carbazeran as a probe substrate. AO activity showed high technical variability and poor correlation with the content in HLC samples, whereas hepatocyte samples showed a strong correlation between the content and activity. Similarly, AO content and activity showed no significant age-dependent differences in HLC samples, whereas the average AO content and activity in hepatocytes increased significantly (∼20-40-fold) from the neonatal levels (0-28 days). Based on the hepatocyte data, the age at which 50% of the adult AO content is reached (age50) was 3.15 years (0.32-13.97 years, 95% CI). Metabolite profiling of carbazeran revealed age-dependent metabolic switching and the role of non-AO mechanisms (glucuronidation and desmethylation) in carbazeran elimination. The content-activity correlation in hepatocytes improved significantly (R2 = 0.95; p < 0.0001) in samples showing <10% contribution of glucuronidation toward the overall metabolism, confirming that AO-mediated oxidation and glucuronidation are the key routes of carbazeran metabolism. Considering the confounding effect of glucuronidation on AO activity, AO content-based ontogeny data are a more direct reflection of developmental changes in protein expression. The comprehensive ontogeny data of AO in HH samples are more reliable than HLC data, which are important for developing robust physiologically based pharmacokinetic models for predicting AO-mediated metabolism in children.


Asunto(s)
Aldehído Oxidasa , Hepatocitos , Hígado , Humanos , Aldehído Oxidasa/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Niño , Lactante , Adulto , Preescolar , Adolescente , Recién Nacido , Masculino , Adulto Joven , Femenino , Persona de Mediana Edad , Citosol/metabolismo , Proteómica/métodos
3.
Drug Metab Dispos ; 51(10): 1362-1371, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37429730

RESUMEN

We investigated the effect of variability and instability in aldehyde oxidase (AO) content and activity on the scaling of in vitro metabolism data. AO content and activity in human liver cytosol (HLC) and five recombinant human AO preparations (rAO) were determined using targeted proteomics and carbazeran oxidation assay, respectively. AO content was highly variable as indicated by the relative expression factor (REF; i.e., HLC to rAO content) ranging from 0.001 to 1.7 across different in vitro systems. The activity of AO in HLC degrades at a 10-fold higher rate in the presence of the substrate as compared with the activity performed after preincubation without substrate. To scale the metabolic activity from rAO to HLC, a protein-normalized activity factor (pnAF) was proposed wherein the activity was corrected by AO content, which revealed up to sixfold higher AO activity in HLC versus rAO systems. A similar value of pnAF was observed for another substrate, ripasudil. Physiologically based pharmacokinetic (PBPK) modeling revealed a significant additional clearance (CL; 66%), which allowed for the successful prediction of in vivo CL of four other substrates, i.e., O-benzyl guanine, BIBX1382, zaleplon, and zoniporide. For carbazeran, the metabolite identification study showed that the direct glucuronidation may be contributing to around 12% elimination. Taken together, this study identified differential protein content, instability of in vitro activity, role of additional AO clearance, and unaccounted metabolic pathways as plausible reasons for the underprediction of AO-mediated drug metabolism. Consideration of these factors and integration of REF and pnAF in PBPK models will allow better prediction of AO metabolism. SIGNIFICANCE STATEMENT: This study elucidated the plausible reasons for the underprediction of aldehyde oxidase (AO)-mediated drug metabolism and provided recommendations to address them. It demonstrated that integrating protein content and activity differences and accounting for the loss of AO activity, as well as consideration of extrahepatic clearance and additional pathways, would improve the in vitro to in vivo extrapolation of AO-mediated drug metabolism using physiologically based pharmacokinetic modeling.


Asunto(s)
Aldehído Oxidasa , Carbamatos , Humanos , Aldehído Oxidasa/metabolismo , Carbamatos/metabolismo , Cinética , Tasa de Depuración Metabólica , Hígado/metabolismo
4.
Mol Pharm ; 20(12): 6213-6225, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37917742

RESUMEN

Lenacapavir (LEN) is a picomolar first-in-class capsid inhibitor of human immunodeficiency virus type 1 (HIV-1) with a multistage mechanism of action and no known cross resistance to other existing antiretroviral (ARV) drug classes. LEN exhibits a low aqueous solubility and exceptionally low systemic clearance following intravenous (IV) administration in nonclinical species and humans. LEN formulated in an aqueous suspension or a PEG/water solution formulation showed sustained plasma exposure levels with no unintended rapid drug release following subcutaneous (SC) administration to rats and dogs. A high total fraction dose release was observed with both formulations. The long-acting pharmacokinetics (PK) were recapitulated in humans following SC administration of both formulations. The SC PK profiles displayed two-phase absorption kinetics in both animals and humans with an initial fast-release absorption phase, followed by a slow-release absorption phase. Noncompartmental and compartmental analyses informed the LEN systemic input rate from the SC depot and exit rate from the body. Modeling-enabled deconvolution of the input rates from two processes: absorption of the soluble fraction (minor) from a direct fast-release process leading to the early PK phase and absorption of the precipitated fraction (major) from an indirect slow-release process leading to the later PK phase. LEN SC PK showed flip-flop kinetics due to the input rate being substantially slower than the systemic exit rate. LEN input rates via the slow-release process in humans were slower than those in both rats and dogs. Overall, the combination of high potency, exceptional stability, and optimal release rate from the injection depot make LEN well suited for a parenteral long-acting formulation that can be administered once up to every 6 months in humans for the prevention and treatment of HIV-1.


Asunto(s)
Fármacos Anti-VIH , VIH-1 , Humanos , Ratas , Animales , Perros , Antirretrovirales , Cápside , Fármacos Anti-VIH/farmacología , Proteínas de la Cápside
5.
Drug Metab Dispos ; 50(3): 197-203, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34969659

RESUMEN

The use of animal pharmacokinetic models as surrogates for humans relies on the assumption that the drug disposition mechanisms are similar between preclinical species and humans. However, significant cross-species differences exist in the tissue distribution and protein abundance of drug-metabolizing enzymes (DMEs) and transporters. We quantified non-cytochrome P450 (non-CYP) DMEs across commonly used preclinical species (cynomolgus and rhesus monkeys, beagle dog, Sprague Dawley and Wistar Han rats, and CD1 mouse) and compared these data with previously obtained human data. Aldehyde oxidase was abundant in humans and monkeys while poorly expressed in rodents, and not expressed in dogs. Carboxylesterase (CES) 1 abundance was highest in the liver while CES2 was primarily expressed in the intestine in all species with notable species differences. For example, hepatic CES1 was 3× higher in humans than in monkeys, but hepatic CES2 was 3-5× higher in monkeys than in humans. Hepatic UDP-glucuronosyltransferase (UGT) 1A2 abundance was ∼4× higher in dogs compared with rats, whereas UGT1A3 abundance was 3-5× higher in dog livers than its ortholog in human and monkey livers. UGT1A6 abundance was 5-6× higher in human livers compared with monkey and dog livers. Hepatic sulfotransferase 1B1 abundance was 5-7× higher in rats compared with the rest of the species. These quantitative non-CYP proteomics data can be used to explain unique toxicological profiles across species and can be integrated into physiologically based pharmacokinetic models for the mechanistic explanation of pharmacokinetics and tissue distribution of xenobiotics in animal species. SIGNIFICANCE STATEMENT: We characterized the quantitative differences in non-cytochrome P450 (non-CYP) drug-metabolizing enzymes across commonly used preclinical species (cynomolgus and rhesus monkeys, beagle dogs, Sprague Dawley and Wistar Han rats, and CD1 mice) and compared these data with previously obtained human data. Unique differences in non-CYP enzymes across species were observed, which can be used to explain significant pharmacokinetic and toxicokinetic differences between experimental animals and humans.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Proteómica , Animales , Animales de Laboratorio/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Perros , Humanos , Hígado/metabolismo , Ratones , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Especificidad de la Especie
6.
Chem Res Toxicol ; 35(8): 1400-1409, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35833852

RESUMEN

Acyl glucuronides (AGs) are common metabolites of carboxylic acid-containing compounds. In some circumstances, AGs are suspected to be involved in drug toxicity due to formation of acyl migration products that bind covalently to cellular components. The risk of this adverse effect has been found to be correlated with the chemical stability of the AG, and assays have been described that monitor acyl migration by liquid chromatography coupled with mass spectrometry (LC-MS). This analysis can be challenging as it requires baseline chromatographic separation of the unmigrated 1-ß-acyl glucuronide from the migrated isomers and thus needs to be individually optimized for each aglycone. Therefore, a high-throughput assay that eliminates LC method development is desirable. Herein, we report an improved acyl glucuronide stability assay based on the rate of 18O-incorporation from [18O] water, which is compatible with high-throughput bioanalytical LC-MS workflows. Synthetic AGs with shorter migration half-lives showed faster incorporation of 18O. The level of differential incorporation of 18O following a 24 h incubation correlates well with the migration tendency of AGs. This assay was developed further, exploring in situ generation of AGs by human hepatic microsomal fraction. The results from 18 in situ-formed acyl glucuronides were similar to those obtained using authentic reference standards. In this format, this new 18O-labeling method offers a simplified workflow, requires no LC method development or AG reference standard, and thus facilitates AG liability assessment in early drug discovery.


Asunto(s)
Ácidos Carboxílicos , Glucurónidos , Cromatografía Liquida/métodos , Glucurónidos/metabolismo , Humanos , Isomerismo , Espectrometría de Masas
7.
Xenobiotica ; 52(9-11): 973-985, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36546430

RESUMEN

Bictegravir (BIC) is a potent small-molecule integrase strand-transfer inhibitor (INSTI) and a component of Biktarvy®, a single-tablet combination regimen that is currently approved for the treatment of human immunodeficiency virus type 1 (HIV-1) infection. The absorption, metabolism, distribution, and elimination (ADME) characteristics of BIC were determined through in vivo nonclinical and clinical studies (IND 121318).[14C]BIC was rapidly absorbed orally in mice, rats, monkeys and human. The cumulative dose recovery was high in nonclinical species (>80%) and humans (95.3%), with most of the excreted dose recovered in faeces. Quantifiable radioactivity with declining concentration was observed in rat tissues suggesting reversible binding. Unchanged BIC was the most abundant circulating component in all species along with two notable metabolites M20 (a sulphate conjugate of hydroxylated BIC) and M15 (a glucuronide conjugate of BIC). BIC was primarily eliminated by hepatic metabolism followed by excretion of the biotransformed products into faeces. In vitro drug-drug interaction (DDI) studies with M15 and M20 demonstrated that no clinically relevant interactions were expected.Overall, BIC is a novel and potent INSTI with a favourable resistance, PK, and ADME profile that provides important improvements over other currently available INSTIs for the treatment of HIV-1.


Asunto(s)
Infecciones por VIH , Inhibidores de Integrasa VIH , VIH-1 , Humanos , Animales , Ratones , Ratas , Inhibidores de Integrasa VIH/farmacología , Inhibidores de Integrasa VIH/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Piridonas , Amidas , Compuestos Heterocíclicos con 3 Anillos/farmacología , Compuestos Heterocíclicos con 3 Anillos/uso terapéutico , Compuestos Heterocíclicos de 4 o más Anillos , Integrasas/uso terapéutico
8.
Xenobiotica ; 52(12): 1020-1030, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36701274

RESUMEN

Bictegravir (BIC) is a potent small-molecule integrase strand-transfer inhibitor (INSTI) and a component of Biktarvy®, a single-tablet combination regimen that is currently approved for the treatment of human immunodeficiency virus type 1 (HIV-1) infection. The in vitro properties, pharmacokinetics (PK), and drug-drug interaction (DDI) profile of BIC were characterised in vitro and in vivo.BIC is a weakly acidic, ionisable, lipophilic, highly plasma protein-bound BCS class 2 molecule, which makes it difficult to predict human PK using standard methods. Its systemic plasma clearance is low, and the volume of distribution is approximately the volume of extracellular water in nonclinical species. BIC metabolism is predominantly mediated by cytochrome P450 enzyme (CYP) 3A and UDP-glucuronosyltransferase 1A1. BIC shows a low potential to perpetrate clinically meaningful DDIs via known drug metabolising enzymes or transporters.The human PK of BIC was predicted using a combination of bioavailability and volume of distribution scaled from nonclinical species and a modified in vitro-in vivo correlation (IVIVC) correction for clearance. Phase 1 studies in healthy subjects largely bore out the prediction and supported the methods used. The approach presented herein could be useful for other drug molecules where standard projections are not sufficiently accurate. .


Asunto(s)
Infecciones por VIH , Inhibidores de Integrasa VIH , VIH-1 , Humanos , Amidas , Interacciones Farmacológicas , Compuestos Heterocíclicos con 3 Anillos/farmacocinética , Infecciones por VIH/tratamiento farmacológico , Inhibidores de Integrasa VIH/farmacocinética , Piridonas
9.
Antimicrob Agents Chemother ; 65(9): e0060221, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34125594

RESUMEN

Remdesivir (RDV; GS-5734, Veklury), the first FDA-approved antiviral to treat COVID-19, is a single-diastereomer monophosphoramidate prodrug of an adenosine analogue. RDV is taken up in the target cells and metabolized in multiple steps to form the active nucleoside triphosphate (TP) (GS-443902), which, in turn, acts as a potent and selective inhibitor of multiple viral RNA polymerases. In this report, we profiled the key enzymes involved in the RDV metabolic pathway with multiple parallel approaches: (i) bioinformatic analysis of nucleoside/nucleotide metabolic enzyme mRNA expression using public human tissue and lung single-cell bulk mRNA sequence (RNA-seq) data sets, (ii) protein and mRNA quantification of enzymes in human lung tissue and primary lung cells, (iii) biochemical studies on the catalytic rate of key enzymes, (iv) effects of specific enzyme inhibitors on the GS-443902 formation, and (v) the effects of these inhibitors on RDV antiviral activity against SARS-CoV-2 in cell culture. Our data collectively demonstrated that carboxylesterase 1 (CES1) and cathepsin A (CatA) are enzymes involved in hydrolyzing RDV to its alanine intermediate MetX, which is further hydrolyzed to the monophosphate form by histidine triad nucleotide-binding protein 1 (HINT1). The monophosphate is then consecutively phosphorylated to diphosphate and triphosphate by cellular phosphotransferases. Our data support the hypothesis that the unique properties of RDV prodrug not only allow lung-specific accumulation critical for the treatment of respiratory viral infection such as COVID-19 but also enable efficient intracellular metabolism of RDV and its MetX to monophosphate and successive phosphorylation to form the active TP in disease-relevant cells.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Humanos , Pulmón , Proteínas del Tejido Nervioso
10.
Drug Metab Dispos ; 48(11): 1199-1209, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32892154

RESUMEN

The eastern woodchuck (Marmota monax) is a hibernating species extensively used as an in vivo efficacy model for chronic human hepatitis B virus infection. Under laboratory conditions, woodchucks develop a pseudohibernation condition; thus, the pharmacokinetics (PK) of small-molecule therapeutics may be affected by the seasonal change. The seasonal PK of four probe compounds were characterized over 12 months in seven male and nine female laboratory-maintained woodchucks. These compounds were selected to study changes in oxidative metabolism [antipyrine (AP)], glucuronidation [raltegravir (RTG)], renal clearance [lamivudine (3TC)], and hepatic function [indocyanine green (ICG)]. Seasonal changes in physiologic parameters and PK were determined. Seasonal body weight increases were ≥30%. Seasonal changes in body temperature and heart rate were <10%. The mean AP exposure remained unchanged from April to August 2017, followed by a significant increase (≥1.0-fold) from August to December and subsequent decrease to baseline at the end of study. A similar trend was observed in RTG and 3TC exposures. The ICG exposure remained unchanged. No significant sex difference in PK was observed, although female woodchucks appeared to be less susceptible to seasonal PK and body weight changes. Significant seasonal PK changes for AP, RTG, and 3TC indicate decreases in oxidative metabolism, phase II glucuronidation, and renal clearance during pseudohibernation. The lack of seasonal change in ICG exposure suggests there are no significant changes in hepatic function. This information can be used to optimize the scheduling of woodchuck studies to avoid seasonally driven variation in drug PK. SIGNIFICANCE STATEMENT: Woodchuck is a hibernating species and is commonly used as a nonclinical model of hepatitis B infection. Investigation of seasonal PK changes is perhaps of greater interest to pharmaceutical industry scientists, who use the woodchuck model to optimize the scheduling of woodchuck studies to avoid seasonally driven variation in drug PK and/or toxicity. This information is also valuable to drug metabolism and veterinary scientists in understanding woodchuck's seasonal metabolism and behavior under the pseudohibernation condition.


Asunto(s)
Antivirales/farmacocinética , Hepatitis B Crónica/tratamiento farmacológico , Hibernación/fisiología , Marmota/fisiología , Tasa de Depuración Metabólica/fisiología , Animales , Antivirales/uso terapéutico , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Femenino , Humanos , Masculino , Estaciones del Año
11.
Drug Metab Dispos ; 48(12): 1283-1292, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33037043

RESUMEN

It is well documented that human hepatic clearance based on in vitro metabolism or transporter assays systematically resulted in underprediction; therefore, large empirical scalars are often needed in either static or physiologically based pharmacokinetic (PBPK) models to accurately predict human pharmacokinetics (PK). In our current investigation, we assessed hepatic uptake in hepatocyte suspension in Krebs-Henseleit buffer in the presence and absence of serum. The results showed that the unbound intrinsic active clearance (CLu,int,active) values obtained by normalizing the unbound fraction in the buffer containing 10% serum were generally higher than the CLu,int,active obtained directly from protein free buffer, suggesting "protein-facilitated" uptake. The differences of CLu,int,active in the buffer with and without protein ranged from 1- to 925-fold and negatively correlated to the unbound serum binding of organic anion transporting polypeptide substrates. When using the uptake values obtained from buffer containing serum versus serum-free buffer, the median of scaling factors (SFs) for CLu,int,active reduced from 24.2-4.6 to 22.7-7.1 for human and monkey, respectively, demonstrating the improvement of in vitro to in vivo extrapolation in a PBPK model. Furthermore, values of CLu,int,active were significantly higher in monkey hepatocytes than that in human, and the species differences appeared to be compound dependent. Scaling up in vitro uptake values derived in assays containing species-specific serum can compensate for the species-specific variabilities when using cynomolgus monkey as a probe animal model. Incorporating SFs calibrated in monkey and together with scaled in vitro data can be a reliable approach for the prospective human PK prediction in early drug discovery. SIGNIFICANCE STATEMENT: We investigated the protein effect on hepatic uptake in human and monkey hepatocytes and improved the in vitro to in vivo extrapolation using parameters obtained from the incubation in the present of serum protein. In addition, significantly higher active uptake clearances were observed in monkey hepatocytes than in human, and the species differences appeared to be compound dependent. The physiologically based pharmacokinetic model that incorporates scaling factors calibrated in monkey and together with scaled in vitro human data can be a reliable approach for the prospective human pharmacokinetics prediction.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Eliminación Hepatobiliar/fisiología , Hígado/metabolismo , Especificidad de la Especie , Animales , Células Cultivadas , Evaluación Preclínica de Medicamentos/métodos , Hepatocitos , Humanos , Infusiones Intravenosas , Hígado/citología , Macaca fascicularis , Masculino , Modelos Animales , Modelos Biológicos , Transportadores de Anión Orgánico/metabolismo , Quinolinas/administración & dosificación , Quinolinas/farmacocinética
12.
Drug Metab Dispos ; 48(7): 528-536, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32350063

RESUMEN

Current challenges in accurately predicting intestinal metabolism arise from the complex nature of the intestine, leading to limited applicability of available in vitro tools as well as knowledge deficits in intestinal physiology, including enzyme abundance. In particular, information on regional enzyme abundance along the small intestine is lacking, especially for non-cytochrome P450 enzymes such as carboxylesterases (CESs), UDP-glucuronosyltransferases (UGTs), and sulfotransferases (SULTs). We used cryopreserved human intestinal mucosa samples from nine donors as an in vitro surrogate model for the small intestine and performed liquid chromatography tandem mass spectrometry-based quantitative proteomics for 17 non-cytochrome P450 enzymes using stable isotope-labeled peptides. Relative protein quantification was done by normalization with enterocyte marker proteins, i.e., villin-1, sucrase isomaltase, and fatty acid binding protein 2, and absolute protein quantification is reported as picomoles per milligram of protein. Activity assays in glucuronidations and sequential metabolisms were conducted to validate the proteomics findings. Relative or absolute quantifications are reported for CES1, CES2, five UGTs, and four SULTs along the small intestine: duodenum, jejunum, and ileum for six donors and in 10 segments along the entire small intestine (A-J) for three donors. Relative quantification using marker proteins may be beneficial in further controlling for technical variabilities. Absolute quantification data will allow for scaling factor generation and in vivo extrapolation of intestinal clearance using physiologically based pharmacokinetic modeling. SIGNIFICANCE STATEMENT: Current knowledge gaps exist in intestinal protein abundance of non-cytochrome P450 enzymes. Here, we employ quantitative proteomics to measure non-cytochrome P450 enzymes along the human small intestine in nine donors using cryopreserved human intestinal mucosa samples. Absolute and relative abundances reported here will allow better scaling of intestinal clearance.


Asunto(s)
Carboxilesterasa/análisis , Glucuronosiltransferasa/análisis , Mucosa Intestinal/enzimología , Intestino Delgado/enzimología , Sulfotransferasas/análisis , Adulto , Carboxilesterasa/metabolismo , Clopidogrel/farmacocinética , Pruebas de Enzimas , Femenino , Glucuronosiltransferasa/antagonistas & inhibidores , Glucuronosiltransferasa/metabolismo , Humanos , Mesilato de Imatinib/farmacología , Irinotecán/farmacocinética , Masculino , Persona de Mediana Edad , Proteómica , Sulfotransferasas/metabolismo , Testosterona/farmacocinética , Adulto Joven
13.
Mol Pharm ; 17(11): 4114-4124, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32955894

RESUMEN

The availability of assays that predict the contribution of cytochrome P450 (CYP) metabolism allows for the design of new chemical entities (NCEs) with minimal oxidative metabolism. These NCEs are often substrates of non-CYP drug-metabolizing enzymes (DMEs), such as UDP-glucuronosyltransferases (UGTs), sulfotransferases (SULTs), carboxylesterases (CESs), and aldehyde oxidase (AO). Nearly 30% of clinically approved drugs are metabolized by non-CYP enzymes. However, knowledge about the differential hepatic versus extrahepatic abundance of non-CYP DMEs is limited. In this study, we detected and quantified the protein abundance of eighteen non-CYP DMEs (AO, CES1 and 2, ten UGTs, and five SULTs) across five different human tissues. AO was most abundantly expressed in the liver and to a lesser extent in the kidney; however, it was not detected in the intestine, heart, or lung. CESs were ubiquitously expressed with CES1 being predominant in the liver, while CES2 was enriched in the small intestine. Consistent with the literature, UGT1A4, UGT2B4, and UGT2B15 demonstrated liver-specific expression, whereas UGT1A10 expression was specific to the intestine. UGT1A1 and UGT1A3 were expressed in both the liver and intestine; UGT1A9 was expressed in the liver and kidney; and UGT2B17 levels were significantly higher in the intestine than in the liver. All five SULTs were detected in the liver and intestine, and SULT1A1 and 1A3 were detected in the lung. Kidney abundance was the most variable among the studied tissues, and overall, high interindividual variability (>15-fold) was observed for UGT2B17, CES2 (intestine), SULT1A1 (liver), UGT1A9, UGT2B7, and CES1 (kidney). These differential tissue abundance data can be integrated into physiologically based pharmacokinetic (PBPK) models for the prediction of non-CYP drug metabolism and toxicity in hepatic and extrahepatic tissues.


Asunto(s)
Aldehído Oxidasa/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Glucuronosiltransferasa/metabolismo , Intestino Delgado/enzimología , Riñón/enzimología , Hígado/enzimología , Pulmón/enzimología , Miocardio/enzimología , Sulfotransferasas/metabolismo , Adolescente , Adulto , Anciano , Niño , Preescolar , Sistema Enzimático del Citocromo P-450/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Donantes de Tejidos , Adulto Joven
14.
Drug Metab Dispos ; 47(12): 1433-1442, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31582395

RESUMEN

Induction potentials of the pregnane X receptor (PXR) activator rifampin (RIF) on transporter genes [e.g., organic anion-transporting polypeptides (OATPs)] are still in its infancy or remain controversial in the field. The present investigations characterized changes in transporter gene expression by RIF in sandwich-cultured hepatocytes from multiple donors of human and cynomolgus monkey using real-time quantitative reverse transcription polymerase chain reaction method. Three-day treatment of RIF significantly induced CYP3A4 (∼60-fold induction), but not CYP1A2 and CYP2D6 genes. SLC51B was the most highly induced uptake transporter gene (>10-fold) in both human and monkey hepatocytes. A greater induction of CYP2C9 was observed in monkey hepatocytes than that in humans. ATP-binding cassette (ABC)B1 and ABCC2 were induced slightly above 2-fold in human and monkey hepatocytes and appeared to be dose-dependent. The induction of OATP and other transporter genes was generally less than 2-fold and considered not clinically relevant. SLCO2B1 was not detectable in monkey hepatocytes. To investigate in vivo OATP induction, RIF (18 mg/kg per day) was orally dosed to cynomolgus monkeys for 7 days. Pitavastatin and antipyrine were intravenously dosed before and after RIF treatment as exogenous probes of OATP and CYP activities, respectively. Plasma coproporphyrin-I (CP-I) and coproporphyrin-III (CP-III) were measured as OATP endogenous biomarkers. Although a significant increase of antipyrine clearance (CL) was observed after RIF treatment, the plasma exposures of pitavastatin, CP-I, and CP-III remained unchanged, suggesting that OATP function was not significantly altered. The results suggested that OATP transporters were not significantly induced by PXR ligand RIF. The data are consistent with current regulatory guidances that the in vitro characterization of transporter induction during drug development is not required. SIGNIFICANCE STATEMENT: Organic anion-transporting polypeptide (OATP) genes were not induced by rifampin in sandwich-cultured human and monkey hepatocytes OATP functions measured by OATP probe pitavastatin and endogenous marker coproporphyrins were not altered in monkeys in vivo by 7-day rifampin treatment. The data suggested that OATP transporters are unlikely induced by the pregnane X receptor ligand rifampin, which are consistent with current regulatory guidances that the in vitro characterization of OATP1B induction during drug development is not required.


Asunto(s)
Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Transportadores de Anión Orgánico/genética , Receptor X de Pregnano/agonistas , Rifampin/farmacología , Animales , Antipirina/sangre , Antipirina/farmacocinética , Área Bajo la Curva , Células Cultivadas , Hepatocitos/metabolismo , Humanos , Macaca fascicularis , Masculino , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Quinolinas/sangre , Quinolinas/farmacocinética , Rifampin/sangre , Especificidad de la Especie
15.
Drug Metab Dispos ; 46(3): 237-247, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29311136

RESUMEN

Momelotinib (MMB), a small-molecule inhibitor of Janus kinase (JAK)1/2 and of activin A receptor type 1 (ACVR1), is in clinical development for the treatment of myeloproliferative neoplasms. The pharmacokinetics and disposition of [14C]MMB were characterized in a single-dose, human mass-balance study. Metabolism and the pharmacologic activity of key metabolites were elucidated in multiple in vitro and in vivo experiments. MMB was rapidly absorbed following oral dosing with approximately 97% of the radioactivity recovered, primarily in feces with urine as a secondary route. Mean blood-to-plasma [14C] area under the plasma concentration-time curve ratio was 0.72, suggesting low association of MMB and metabolites with blood cells. [14C]MMB-derived radioactivity was detectable in blood for ≤48 hours, suggesting no irreversible binding of MMB or its metabolites. The major circulating human metabolite, M21 (a morpholino lactam), is a potent inhibitor of JAK1/2 and ACVR1 in vitro. Estimation of pharmacological activity index suggests M21 contributes significantly to the pharmacological activity of MMB for the inhibition of both JAK1/2 and ACVR1. M21 was observed in disproportionately higher amounts in human plasma than in rat or dog, the rodent and nonrodent species used for the general nonclinical safety assessment of this molecule. This discrepancy was resolved with additional nonclinical studies wherein the circulating metabolites and drug-drug interactions were further characterized. The human metabolism of MMB was mediated primarily by multiple cytochrome P450 enzymes, whereas M21 formation involved initial P450 oxidation of the morpholine ring followed by metabolism via aldehyde oxidase.


Asunto(s)
Benzamidas/farmacocinética , Pirimidinas/farmacocinética , Adolescente , Adulto , Animales , Línea Celular , Línea Celular Tumoral , Sistema Enzimático del Citocromo P-450/metabolismo , Perros , Interacciones Farmacológicas/fisiología , Femenino , Células Hep G2 , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Ratas , Adulto Joven
16.
Drug Metab Dispos ; 44(1): 102-14, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26512042

RESUMEN

N-Methyl-2-[3-((E)-2-pyridin-2-yl-vinyl)-1H-indazol-6-ylsulfanyl]-benzamide (axitinib) is an oral inhibitor of vascular endothelial growth factor receptors 1-3, which is approved for the treatment of advanced renal cell cancer. Human [(14)C]-labeled clinical studies indicate axitinib's primary route of clearance is metabolism. The aims of the in vitro experiments presented herein were to identify and characterize the enzymes involved in axitinib metabolic clearance. In vitro biotransformation studies of axitinib identified a number of metabolites including an axitinib sulfoxide, several less abundant oxidative metabolites, and glucuronide conjugates. The most abundant NADPH- and UDPGA-dependent metabolites, axitinib sulfoxide (M12) and axitinib N-glucuronide (M7) were selected for phenotyping and kinetic study. Phenotyping experiments with human liver microsomes (HLMs) using chemical inhibitors and recombinant human cytochrome P450s demonstrated axitinib was predominately metabolized by CYP3A4/5, with minor contributions from CYP2C19 and CYP1A2. The apparent substrate concentration at half-maximal velocity (Km) and Vmax values for the formation of axitinib sulfoxide by CYP3A4 or CYP3A5 were 4.0 or 1.9 µM and 9.6 or 1.4 pmol·min(-1)·pmol(-1), respectively. Using a CYP3A4-specific inhibitor (Cyp3cide) in liver microsomes expressing CYP3A5, 66% of the axitinib intrinsic clearance was attributable to CYP3A4 and 15% to CYP3A5. Axitinib N-glucuronidation was primarily catalyzed by UDP-glucuronosyltransferase (UGT) UGT1A1, which was verified by chemical inhibitors and UGT1A1 null expressers, with lesser contributions from UGTs 1A3, 1A9, and 1A4. The Km and Vmax values describing the formation of the N-glucuronide in HLM or rUGT1A1 were 2.7 µM or 0.75 µM and 8.9 or 8.3 pmol·min(-1)·mg(-1), respectively. In summary, CYP3A4 is the major enzyme involved in axitinib clearance with lesser contributions from CYP3A5, CYP2C19, CYP1A2, and UGT1A1.


Asunto(s)
Inhibidores de la Angiogénesis/metabolismo , Citocromo P-450 CYP3A/metabolismo , Glucuronosiltransferasa/metabolismo , Imidazoles/metabolismo , Indazoles/metabolismo , Microsomas Hepáticos/enzimología , Inhibidores de Proteínas Quinasas/metabolismo , Axitinib , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP3A/genética , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Femenino , Genotipo , Glucurónidos/metabolismo , Glucuronosiltransferasa/genética , Humanos , Inactivación Metabólica , Cinética , Masculino , Tasa de Depuración Metabólica , Microsomas Hepáticos/efectos de los fármacos , Modelos Biológicos , Oxidación-Reducción , Fenotipo , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Sulfóxidos/metabolismo
17.
Drug Metab Dispos ; 43(10): 1417-29, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26180127

RESUMEN

An orally available multiple tyrosine kinase inhibitor, crizotinib (Xalkori), is a CYP3A substrate, moderate time-dependent inhibitor, and weak inducer. The main objectives of the present study were to: 1) develop and refine a physiologically based pharmacokinetic (PBPK) model of crizotinib on the basis of clinical single- and multiple-dose results, 2) verify the crizotinib PBPK model from crizotinib single-dose drug-drug interaction (DDI) results with multiple-dose coadministration of ketoconazole or rifampin, and 3) apply the crizotinib PBPK model to predict crizotinib multiple-dose DDI outcomes. We also focused on gaining insights into the underlying mechanisms mediating crizotinib DDIs using a dynamic PBPK model, the Simcyp population-based simulator. First, PBPK model-predicted crizotinib exposures adequately matched clinically observed results in the single- and multiple-dose studies. Second, the model-predicted crizotinib exposures sufficiently matched clinically observed results in the crizotinib single-dose DDI studies with ketoconazole or rifampin, resulting in the reasonably predicted fold-increases in crizotinib exposures. Finally, the predicted fold-increases in crizotinib exposures in the multiple-dose DDI studies were roughly comparable to those in the single-dose DDI studies, suggesting that the effects of crizotinib CYP3A time-dependent inhibition (net inhibition) on the multiple-dose DDI outcomes would be negligible. Therefore, crizotinib dose-adjustment in the multiple-dose DDI studies could be made on the basis of currently available single-dose results. Overall, we believe that the crizotinib PBPK model developed, refined, and verified in the present study would adequately predict crizotinib oral exposures in other clinical studies, such as DDIs with weak/moderate CYP3A inhibitors/inducers and drug-disease interactions in patients with hepatic or renal impairment.


Asunto(s)
Citocromo P-450 CYP3A/sangre , Cetoconazol/sangre , Modelos Biológicos , Pirazoles/sangre , Piridinas/sangre , Rifampin/sangre , Adulto , Crizotinib , Estudios Cruzados , Interacciones Farmacológicas/fisiología , Femenino , Predicción , Humanos , Cetoconazol/administración & dosificación , Masculino , Persona de Mediana Edad , Pirazoles/administración & dosificación , Piridinas/administración & dosificación , Rifampin/administración & dosificación , Especificidad por Sustrato/fisiología
18.
Xenobiotica ; 45(1): 45-59, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25034009

RESUMEN

1. Crizotinib (XALKORI®), an oral inhibitor of anaplastic lymphoma kinase (ALK) and mesenchymal-epithelial transition factor kinase (c-Met), is currently approved for the treatment of patients with non-small cell lung cancer that is ALK-positive. 2. The metabolism, excretion and pharmacokinetics of crizotinib were investigated following administration of a single oral dose of 250 mg/100 µCi [(14)C]crizotinib to six healthy male subjects. 3. Mean recovery of [(14)C]crizotinib-related radioactivity in excreta samples was 85% of the dose (63% in feces and 22% in urine). 4. Crizotinib and its metabolite, crizotinib lactam, were the major components circulating in plasma, accounting for 33% and 10%, respectively, of the 0-96 h plasma radioactivity. Unchanged crizotinib was the major excreted component in feces (∼ 53% of the dose). In urine, crizotinib and O-desalkyl crizotinib lactam accounted for ∼ 2% and 5% of the dose, respectively. Collectively, these data indicate that the primary clearance pathway for crizotinib in humans is oxidative metabolism/hepatic elimination. 5. Based on plasma exposure in healthy subjects following a single dose of crizotinib and in vitro potency against ALK and c-Met, the crizotinib lactam diastereomers are not anticipated to contribute significantly to in vivo activity; however, additional assessment in cancer patients is warranted.


Asunto(s)
Inhibidores de Proteínas Quinasas/metabolismo , Pirazoles/metabolismo , Piridinas/metabolismo , Administración Oral , Adulto , Radioisótopos de Carbono , Crizotinib , Heces/química , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Inhibidores de Proteínas Quinasas/análisis , Inhibidores de Proteínas Quinasas/farmacocinética , Pirazoles/análisis , Pirazoles/farmacocinética , Piridinas/análisis , Piridinas/farmacocinética
19.
Drug Metab Dispos ; 42(5): 918-31, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24608633

RESUMEN

The disposition of a single oral dose of 5 mg (100 µCi) of [(14)C]axitinib was investigated in fasted healthy human subjects (N = 8). Axitinib was rapidly absorbed, with a median plasma Tmax of 2.2 hours and a geometric mean Cmax and half-life of 29.2 ng/ml and 10.6 hours, respectively. The plasma total radioactivity-time profile was similar to that of axitinib but the AUC was greater, suggesting the presence of metabolites. The major metabolites in human plasma (0-12 hours), identified as axitinib N-glucuronide (M7) and axitinib sulfoxide (M12), were pharmacologically inactive, and with axitinib comprised 50.4%, 16.2%, and 22.5% of the radioactivity, respectively. In excreta, the majority of radioactivity was recovered in most subjects by 48 hours postdose. The median radioactivity excreted in urine, feces, and total recovery was 22.7%, 37.0%, and 59.7%, respectively. The recovery from feces was variable across subjects (range, 2.5%-60.2%). The metabolites identified in urine were M5 (carboxylic acid), M12 (sulfoxide), M7 (N-glucuronide), M9 (sulfoxide/N-oxide), and M8a (methylhydroxy glucuronide), accounting for 5.7%, 3.5%, 2.6%, 1.7%, and 1.3% of the dose, respectively. The drug-related products identified in feces were unchanged axitinib, M14/15 (mono-oxidation/sulfone), M12a (epoxide), and an unidentified metabolite, comprising 12%, 5.7%, 5.1%, and 5.0% of the dose, respectively. The proposed mechanism to form M5 involved a carbon-carbon bond cleavage via M12a, followed by rearrangement to a ketone intermediate and subsequent Baeyer-Villiger rearrangement, possibly through a peroxide intermediate. In summary, the study characterized axitinib metabolites in circulation and primary elimination pathways of the drug, which were mainly oxidative in nature.


Asunto(s)
Imidazoles/farmacocinética , Indazoles/farmacocinética , Inhibidores de Proteínas Quinasas/farmacocinética , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Adulto , Axitinib , Radioisótopos de Carbono , Cromatografía Líquida de Alta Presión , Heces/química , Humanos , Imidazoles/sangre , Imidazoles/metabolismo , Imidazoles/orina , Indazoles/sangre , Indazoles/metabolismo , Indazoles/orina , Espectroscopía de Resonancia Magnética , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Estructura Molecular , Inhibidores de Proteínas Quinasas/sangre , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/orina
20.
Sci Rep ; 14(1): 13437, 2024 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862601

RESUMEN

The primary hurdles for small interference RNA (siRNA) in clinical use are targeted and cytosolic delivery. To overcome both challenges, we have established a novel platform based on phage display, called NNJA. In this approach, a lysosomal cathepsin substrate is engineered within the flexible loops of PIII, that is displaying a unique random sequence at its N-terminus. NNJA library selection targeting cell-expressed targets should yield specific peptides localized in the cytoplasm. That is because phage internalization and subsequent localization to lysosome, upon peptide binding to the cell expressed target, will result in cleavage of PIII, rendering phage non-infective. Such phage will be eliminated from the selected pool and only peptide-phage that escapes lysosomes will advance to the next round. Proof of concept studies with the NNJA library demonstrated cytosolic localization of selected peptide-phage and peptide-siRNA, confirmed through confocal microscopy. More importantly, conjugation of siHPRT to monomeric or multimeric NNJA peptides resulted in significant reduction in HPRT mRNA in various cell types without significant cytotoxicity. Sequence similarity and clustering analysis from NGS dataset provide insights into sequence composition facilitating cell penetration. NNJA platform offers a highly efficient peptide discovery engine for targeted delivery of oligonucleotides to cytosol.


Asunto(s)
Péptidos de Penetración Celular , Biblioteca de Péptidos , ARN Interferente Pequeño , Péptidos de Penetración Celular/metabolismo , Péptidos de Penetración Celular/química , Humanos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Lisosomas/metabolismo , Técnicas de Visualización de Superficie Celular/métodos , Citosol/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA