RESUMEN
Silver(I) ions (Ag+) undergo selective π-complexation with olefins and have been employed as separation media for the isolation of olefins from structurally similar paraffins. Ionic liquids (ILs) possess minimal vapor pressures, exceptional thermal stabilities, low melting points, as well as provide a favorable environment for π-complexation between Ag+ ions and olefins. The development of molecular drivers capable of highly selective olefin/paraffin separation systems with Ag+-containing ILs necessitates a comprehensive understanding of all factors that affect olefin solubility and selectivity. This study examines how coordinating different ligand species to Ag+ ions produces separation media with varying interaction strengths to olefins. Four coordination compounds, (4,4'-dimethyl-2,2'-bipyridine)silver(I) bis[(trifluoromethyl)sulfonyl]imide ([Ag+(DMBP)][NTf2-]), bis(pyridine)silver(I) [NTf2-] ([Ag+(Py)2][NTf2-]), bis(2,6-lutidine)silver(I) [NTf2-] ([Ag+(Lut)2][NTf2-]), and (triphenylphosphine)silver(I) [NTf2-] ([Ag+(PPh3)][NTf2-]) were dissolved in the 1-decyl-3-methylimidazolium [NTf2-] ([DMIM+][NTf2-]) IL and employed as stationary phases for inverse gas chromatography. Ligand coordination to the Ag+ ion was observed to modulate interactions of unsaturated hydrocarbons. The [Ag+(Py)2][NTf2-] complex offered the greatest olefin retention among the coordination complexes reaching 54% of the 1-octene retention factor of the uncoordinated [Ag+][NTf2-]. Hydrogen (H2) exposure studies showed ligand-dependent rates of reduction from Ag+ ion to elemental silver (Ag0). The [Ag+(PPh3)][NTf2-] complex exhibited superior stability, compared to the neat [Ag+][NTf2-] salt, reducing the retention factor of 1-octene by 15.3% and 19.4%, respectively, after 200 h of H2 exposure at 70 °C. The results from this study show that coordination complexes with Ag+ ions are useful in highly selective and efficient petroleum processing systems.
RESUMEN
Receptor for advanced glycation endproducts (RAGE) and toll-like receptor 4 (TLR4) are pattern-recognition receptors that bind to molecular patterns associated with pathogens, stress, and cellular damage. Diffusion plays an important role in receptor functionality in the cell membrane. However, there has been no prior investigation of the reciprocal effect of RAGE and TLR4 diffusion properties in the presence and absence of each receptor. This study reports how RAGE and TLR4 affect the mobility of each other in the human embryonic kidney (HEK) 293 cell membrane. Diffusion properties were measured using single-particle tracking (SPT) with quantum dots (QDs) that are selectively attached to RAGE or TLR4. The Brownian diffusion coefficients of RAGE and TLR4 are affected by the presence of the other receptor, leading to similar diffusion coefficients when both receptors coexist in the cell. When TLR4 is present, the average Brownian diffusion coefficient of RAGE increases by 40%, while the presence of RAGE decreases the average Brownian diffusion coefficient of TLR4 by 32%. Diffusion in confined membrane domains is not altered by the presence of the other receptor. The mobility of the cell membrane lipid remains constant whether one or both receptors are present. Overall, this work shows that the presence of each receptor can affect a subset of diffusion properties of the other receptor without affecting the mobility of the membrane.
Asunto(s)
Membrana Celular , Receptor para Productos Finales de Glicación Avanzada , Receptor Toll-Like 4 , Humanos , Receptor Toll-Like 4/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Células HEK293 , Membrana Celular/metabolismo , DifusiónRESUMEN
Pyrrole-containing natural products form a large group of structurally diverse compounds that occur in both terrestrial and marine organisms. In the present study the formation of trideuteromethylated artifacts of pyrrole-containing natural products was investigated, focusing on the discorhabdins. Three deuterated discorhabdins, 1, 3, and 5, were identified to be isolation procedure artifacts caused by the presence of DMSO-d6 during NMR sample preparation and handling. Three additional semisynthetic derivatives, 7-9, were made during the investigation of the mechanism of formation, which was shown to be driven by trideuteromethyl radicals in the presence of water, methanol, TFA, and traces of iron in the deuterated solvent. Generation of trideuteromethylated artifacts was also confirmed for other classes of pyrrole-containing metabolites, namely, makaluvamines, tambjamines, and dibromotryptamines, which had also been dissolved in DMSO-d6 during the structure elucidation process. Semisynthetic discorhabdins were assessed for antiproliferative activity against a panel of human tumor cell lines, and 14-trideuteromethyldiscorhabdin L (3) averaged low micromolar potency.
Asunto(s)
Productos Biológicos , Dimetilsulfóxido , Humanos , Dimetilsulfóxido/química , Pirroles/química , Productos Biológicos/farmacología , Artefactos , Solventes/químicaRESUMEN
Merkel cell carcinoma (MCC) is a rare and aggressive cutaneous cancer. Two new prenylated indole 2,5-diketopiperazine alkaloids, brevianamides E1 (1) and E2 (2), were isolated from a Penicillium fungus. Both compounds showed moderate cytotoxic activity against select MCC cell lines (i.e., MCC13, MKL-1, UISO, and WaGa) in the low micromolar range. The relative and absolute configurations of 1 and 2 were determined by combined approaches, including NOESY spectroscopy, DFT ECD and DP4 plus calculations, and Marfey's reaction. Literature research and the comparison of NMR and ECD data led to the structure revision of three previously reported natural analogues, notoamides K and P and asperversiamide L. The structurally unstable 1 and 2 underwent steady interconversion under neutral aqueous conditions. Investigation of the degradation of 2 in acidic methanol solutions led to the identification of a new methoxylated derivative (6) and two new ring-opened products (7 and 8) with the rearranged, elongated, 4-methylpent-3-ene side chain. The facile transformation of 2 to 7 and 8 was promoted by the intrinsic impurity (i.e., formaldehyde) of HPLC-grade methanol through the aza-Cope rearrangement.
Asunto(s)
Dicetopiperazinas , Penicillium , Penicillium/química , Dicetopiperazinas/farmacología , Dicetopiperazinas/química , Estructura Molecular , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Ensayos de Selección de Medicamentos AntitumoralesRESUMEN
A high throughput screen performed to identify catalytic inhibitors of the oncogenic fusion form of cAMP-dependent protein kinase A catalytic subunit alpha (J-PKAcα) found an individual fraction from an organic extract of the marine soft coral Acrozoanthus australiae as active. Bioassay-guided isolation led to the identification of a 2-amino adenine alkaloid acroamine A (1), the first secondary metabolite discovered from this genus and previously reported as a synthetic product. As a naturally occurring protein kinase inhibitor, to unambiguously assign its chemical structure using modern spectroscopic and spectrometric techniques, five N-methylated derivatives acroamines A1-A5 (2-6) were semisynthesized. Three additional brominated congeners A6-A8 (7-9) were also semisynthesized to investigate the structure-activity relationship of the nine compounds as J-PKAcα inhibitors. Compounds 1-9 were tested for J-PKAcα and wild-type PKA inhibitory activities, which were observed exclusively in acroamine A (1) and its brominated analogs (7-9) achieving moderate potency (IC50 2-50 µM) while none of the N-methylated analogs exhibited kinase inhibition.
Asunto(s)
Alcaloides , Antozoos , Proteínas Quinasas Dependientes de AMP Cíclico , Animales , Antozoos/química , Estructura Molecular , Alcaloides/farmacología , Alcaloides/química , Alcaloides/aislamiento & purificación , Relación Estructura-Actividad , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Adenina/farmacología , Adenina/análogos & derivados , Adenina/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Dominio CatalíticoRESUMEN
The inertness of elemental selenium is a significant obstacle in the synthesis of selenium-containing materials at low reaction temperatures. Over the years, several recipes have been developed to overcome this hurdle; however, most of the methods are associated with the use of highly toxic, expensive, and environmentally harmful reagents. As such, there is an increasing demand for the design of cheap, stable, and nontoxic reactive selenium precursors usable in the low-temperature synthesis of transition metal selenides with vast applications in nanotechnology, thermoelectrics, and superconductors. Herein, a novel synthetic route has been developed for activating elemental selenium by using a solvothermal approach. By comprehensive 77Se NMR, Raman, and infrared spectroscopies and gas chromatography-mass spectrometry, we show that the activated Se solution contained HSe-, [Se-Se]2-, and Se2- ions, as well as dialkyl selenide (R2Se) and dialkyl diselenide (R-Se-Se-R) species in dynamic equilibrium. This also corresponded to the first observation of naked Se22- in solution. The versatility of the developed Se precursor was demonstrated by the successful synthesis of (i) the polycrystalline room-temperature modification of the ß-Ag2Se thermoelectric material; (ii) large single crystals of superconducting ß-FeSe; (iii) CdSe nanocrystals with different particle sizes (3-10 nm); (iv) nanosheets of PtSe2; and (v) mono- and dibenzyl selenides and diselenides at room temperature. The simplicity and diversity of the developed Se activation method holds promise for applied and fundamental research.
RESUMEN
The DNAJB1-PRKACA oncogenic gene fusion results in an active kinase enzyme, J-PKAcα, that has been identified as an attractive antitumor target for fibrolamellar hepatocellular carcinoma (FLHCC). A high-throughput assay was used to identify inhibitors of J-PKAcα catalytic activity by screening the NCI Program for Natural Product Discovery (NPNPD) prefractionated natural product library. Purification of the active agent from a single fraction of an Aplidium sp. marine tunicate led to the discovery of two unprecedented alkaloids, aplithianines A (1) and B (2). Aplithianine A (1) showed potent inhibition against J-PKAcα with an IC50 of â¼1 µM in the primary screening assay. In kinome screening, 1 inhibited wild-type PKA with an IC50 of 84 nM. Further mechanistic studies including cocrystallization and X-ray diffraction experiments revealed that 1 inhibited PKAcα catalytic activity by competitively binding to the ATP pocket. Human kinome profiling of 1 against a panel of 370 kinases revealed potent inhibition of select serine/threonine kinases in the CLK and PKG families with IC50 values in the range â¼11-90 nM. An efficient, four-step total synthesis of 1 has been accomplished, enabling further evaluation of aplithianines as biologically relevant kinase inhibitors.
Asunto(s)
Productos Biológicos , Carcinoma Hepatocelular , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas , Carcinoma Hepatocelular/patología , Serina , Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismoRESUMEN
A library of naturally occurring and semi-synthetic discorhabdins was assessed for their effects on Merkel cell carcinoma (MCC) cell viability. The set included five new natural products and semi-synthetic compounds whose structures were elucidated with NMR, HRMS, and ECD techniques. Several discorhabdins averaged sub-micromolar potency against the MCC cell lines tested and most of the active compounds showed selectivity towards virus-positive MCC cell lines. An investigation of structure-activity relationships resulted in an expanded understanding of the crucial structural features of the discorhabdin scaffold. Mechanistic cell death assays suggested that discorhabdins, unlike many other MCC-active small molecules, do not induce apoptosis, as shown by the lack of caspase activation, annexin V staining, and response to caspase inhibition. Similarly, discorhabdin treatment failed to increase MCC intracellular calcium and ROS levels. In contrast, the rapid loss of cellular reducing potential and mitochondrial membrane potential suggested that discorhabdins induce mitochondrial dysfunction leading to non-apoptotic cell death.
Asunto(s)
Alcaloides , Carcinoma de Células de Merkel , Neoplasias Cutáneas , Humanos , Carcinoma de Células de Merkel/tratamiento farmacológico , Muerte Celular , Relación Estructura-Actividad , Alcaloides/farmacología , Caspasas , Neoplasias Cutáneas/tratamiento farmacológicoRESUMEN
Deep eutectic solvents (DESs) are a tunable class of solvents with many advantageous properties including good thermal stability, facile synthesis, low vapor pressure, and low-to-negligible toxicity. DESs are composed of hydrogen bond donors and acceptors that, when combined, significantly decrease the freezing point of the resulting solvent. DESs have distinct interfacial and bulk structural heterogeneity compared to traditional solvents, in part due to various intramolecular and intermolecular interactions. Many of the physiochemical properties observed for DESs are influenced by structure. However, our understanding of the interfacial and bulk structure of DESs is incomplete. To fully exploit these solvents in a range of applications including catalysis, separations, and electrochemistry, a better understanding of DES structure must be obtained. In this Perspective, we provide an overview of the current knowledge of the interfacial and bulk structure of DESs and suggest future research directions to improve our understanding of this important information.
RESUMEN
A precipitation method involving a deep eutectic solvent (DES)âa mixture of hydrogen bond donor and acceptorâis used to synthesize a ternary metal oxide. Without toxic reagents, precipitates consisting of Zn3(OH)2V2O7·nH2O and Zn5(OH)6(CO3)2 are obtained by simply introducing deionized H2O to the DES solution containing dissolved ZnO and V2O5. Manipulation of the synthetic conditions demonstrates high tunability in the size/morphology of the two-dimensional nanosheets precipitated during the dynamic equilibrium process. According to differential scanning calorimetry and high-temperature powder X-ray diffraction, Zn3V2O8 and ZnO obtained by the annealing of the precipitate are intermediates in the reaction pathway toward metastable Zn4V2O9. Intimate mixing of the metal precursors achieved by the precipitation method allows access to the metastable zinc-rich vanadate with unusually rapid heat treatment. The UV-vis and surface photovoltage spectra reveal the presence of sub-band gap states, stemming from the reduced vanadium (V4+) center. Photoelectrochemical measurements confirm weak photoanodic currents for water and methanol oxidation. For the first time, this work shows the synthesis of a metastable oxide with the DES-precipitation route and provides insight into the structure-property relationship of the zinc-rich vanadate.
RESUMEN
Seven new peptaibols named tolypocladamides A-G have been isolated from an extract of the fungus Tolypocladium inflatum, which inhibits the interaction between Raf and oncogenic Ras in a cell-based high-throughput screening assay. Each peptaibol contains 11 amino acid residues, an octanoyl or decanoyl fatty acid chain at the N-terminus, and a leucinol moiety at the C-terminus. The peptaibol sequences were elucidated on the basis of 2D NMR and mass spectral fragmentation analyses. Amino acid configurations were determined by advanced Marfey's analyses. Tolypocladamides A-G caused significant inhibition of Ras/Raf interactions with IC50 values ranging from 0.5 to 5.0 µM in a nanobioluminescence resonance energy transfer (NanoBRET) assay; however, no interactions were observed in a surface plasmon resonance assay for binding of the compounds to wild type or G12D mutant Ras constructs or to the Ras binding domain of Raf. NCI 60 cell line testing was also conducted, and little panel selectivity was observed.
Asunto(s)
Antineoplásicos , Hypocreales , Aminoácidos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Hypocreales/química , Peptaiboles/farmacologíaRESUMEN
BACKGROUND: Colonization of dairy cows by Staphylococcus aureus (S. aureus), especially those which are multi-drug resistant and toxin producing, is a concern for animal health and well-being as well as public health. The objective of this study was to investigate the prevalence, antibiotic resistance, gene content and virulence determinants of S. aureus in bulk tank milk samples (BTM) from U.S. dairy herds. RESULTS: BTM samples were collected, once in winter and once in summer, from 189 U.S. dairy herds. Of 365 BTM samples cultured, the sample and herd prevalence of S. aureus in BTM was 46.6% (170 of 365 samples) and 62.4% (118 of 189 herds), respectively. Among a subset of 138 S. aureus isolates that were stored for further analysis, 124 were genome sequenced after being confirmed as S. aureus using phenotypic tests. The most commonly identified antimicrobial resistance-associated gene was norA (99.2%) and mecA gene responsible for methicillin resistance (MRSA) was identified in one isolate (0.8%). The most frequently detected putative virulence genes were aur (100%), hlgB (100%), hlgA, hlgC, hlb (99.2%), lukE (95.9%) and lukD (94.3%). In the 53 staphylococcal enterotoxin positive isolates, sen (37.9%), sem (35.5%), sei (35.5%) and seg (33.1%) were the most frequently detected enterotoxin genes. Among the 14 sequence types (ST) and 18 spa types identified, the most common was ST2187 (20.9%) and t529 (28.2%), respectively. The most predominant clone was CC97 (47.6%) followed by CC unknown (36.3%). The single MRSA isolate belonged to ST72-CC8, spa type t126 and was negative for the tst gene but harbored all the other virulence genes investigated. CONCLUSION: Our findings indicated a high prevalence of S. aureus in BTM of U.S. dairy herds, with isolates showing little evidence of resistance to antibiotics commonly used to treat mastitis. However, isolates often carried genes for the various enterotoxins. This study identified predominant genetic clones. Despite lower prevalence, the presence of MRSA and multi-drug resistant strains in BTM poses a significant risk to animal and public health if their number were to increase in dairy environment. Therefore, it is necessary to continuously monitor the use of antibiotics in dairy cows.
Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Bovinos , Farmacorresistencia Microbiana , Femenino , Variación Genética , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Leche , Prevalencia , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/veterinaria , Staphylococcus aureus/genética , Virulencia/genéticaRESUMEN
Laser-induced graphene (LIG) has shown to be a scalable manufacturing route to create graphene electrodes that overcome the expense associated with conventional graphene electrode fabrication. Herein, we expand upon initial LIG reports by functionalizing the LIG with metallic nanoparticles for ion sensing, pesticide monitoring, and water splitting. The LIG electrodes were converted into ion-selective sensors by functionalization with poly(vinyl chloride)-based membranes containing K+ and H+ ionophores. These ion-selective sensors exhibited a rapid response time (10-15 s), near-Nernstian sensitivity (53.0 mV/dec for the K+ sensor and - 56.6 mV/pH for the pH sensor), and long storage stability for 40 days, and were capable of ion monitoring in artificial urine. The pesticide biosensors were created by functionalizing the LIG electrodes with the enzyme horseradish peroxidase and displayed a high sensitivity to atrazine (28.9 nA/µM) with negligible inference from other common herbicides (glyphosate, dicamba, and 2,4-dichlorophenoxyacetic acid). Finally, the LIG electrodes also exhibited a small overpotential for hydrogen evolution reaction and oxygen evolution reaction. The oxygen evolution reaction tests yielded overpotentials of 448 mV and 995 mV for 10 mA/cm2 and 100 mA/cm2, respectively. The hydrogen evolution reaction tests yielded 35 mV and 281 mV for the corresponding current densities. Such a versatile LIG platform paves the way for simple, efficient electrochemical sensing and energy harvesting applications.
RESUMEN
An extract of a Sinularia sp. soft coral showed inhibitory activity against the E3-ubiquitin ligase casitas B-lineage lymphoma proto-oncogene B (Cbl-b). Subsequent bioassay-guided separation of the extract provided a series of terpenoid-derived spermidine and spermine amides that were named sinularamides A-G (1-7). Compounds 1-7 represent new natural products; however, sinularamide A (1) was previously reported as a synthetic end product. The structures of sinularamides A-G (1-7) were elucidated by analysis of spectroscopic and spectrometric data from NMR, IR, and HRESIMS experiments and by comparison with literature data. All of the isolated compounds showed Cbl-b inhibitory activities with IC50 values that ranged from approximately 6.5 to 33 µM.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Antozoos/química , Proteínas Proto-Oncogénicas c-cbl/antagonistas & inhibidores , Espermidina/farmacología , Espermina/farmacología , Terpenos/farmacología , Animales , Estructura Molecular , Palau , Espermidina/aislamiento & purificación , Espermina/aislamiento & purificación , Terpenos/aislamiento & purificaciónRESUMEN
An extract of the coralline demosponge Astrosclera willeyana inhibited the ubiquitin ligase activity of the immunomodulatory protein Cbl-b. The bioassay-guided separation of the extract provided ten active compounds, including three new N-methyladenine-containing diterpenoids, agelasines W-Y (1-3), a new bromopyrrole alkaloid, N(1)-methylisoageliferin (4), and six known ageliferin derivatives (5-10). The structures of the new compounds were elucidated from their spectroscopic and spectrometric data, including IR, HRESIMS, and NMR, and by comparison with spectroscopic data in the literature. While all of the isolated compounds showed Cbl-b inhibitory activities, ageliferins (4-10) were the most potent metabolites, with IC50 values that ranged from 18 to 35 µM.
Asunto(s)
Diterpenos/farmacología , Imidazoles/metabolismo , Poríferos , Pirroles/metabolismo , Animales , Organismos Acuáticos , Diterpenos/química , Humanos , Estructura Molecular , Fitoterapia , TongaRESUMEN
Photocages are light-sensitive chemical protecting groups that give investigators control over activation of biomolecules using targeted light irradiation. A compelling application of far-red/near-IR absorbing photocages is their potential for deep tissue activation of biomolecules and phototherapeutics. Toward this goal, we recently reported BODIPY photocages that absorb near-IR light. However, these photocages have reduced photorelease efficiencies compared to shorter-wavelength absorbing photocages, which has hindered their application. Because photochemistry is a zero-sum competition of rates, improvement of the quantum yield of a photoreaction can be achieved either by making the desired photoreaction more efficient or by hobbling competitive decay channels. This latter strategy of inhibiting unproductive decay channels was pursued to improve the release efficiency of long-wavelength absorbing BODIPY photocages by synthesizing structures that block access to unproductive singlet internal conversion conical intersections, which have recently been located for simple BODIPY structures from excited state dynamic simulations. This strategy led to the synthesis of new conformationally restrained boron-methylated BODIPY photocages that absorb light strongly around 700 nm. In the best case, a photocage was identified with an extinction coefficient of 124000 M-1 cm-1, a quantum yield of photorelease of 3.8%, and an overall quantum efficiency of 4650 M-1 cm-1 at 680 nm. This derivative has a quantum efficiency that is 50-fold higher than the best known BODIPY photocages absorbing >600 nm, validating the effectiveness of a strategy for designing efficient photoreactions by thwarting competitive excited state decay channels. Furthermore, 1,7-diaryl substitutions were found to improve the quantum yields of photorelease by excited state participation and blocking ion pair recombination by internal nucleophilic trapping. No cellular toxicity (trypan blue exclusion) was observed at 20 µM, and photoactivation was demonstrated in HeLa cells using red light.
RESUMEN
Ornithobacterium rhinotracheale is a causative agent of respiratory tract infections in avian hosts worldwide but is a particular problem for commercial turkey production. Little is known about the ecologic and evolutionary dynamics of O. rhinotracheale, which makes prevention and control of this pathogen a challenge. The purpose of this study was to gain insight into the genetic relationships between O. rhinotracheale populations through comparative genomics of clinical isolates from different U.S. turkey producers. O. rhinotracheale clinical isolates were collected from four major U.S. turkey producers and several independent turkey growers from the upper Midwest and Southeast, and whole-genome sequencing was performed. Genomes were compared phylogenetically using single nucleotide polymorphism (SNP)-based analysis, and then assembly and annotations were performed to identify genes encoding putative virulence factors and antimicrobial resistance determinants. A pangenome approach was also used to establish a core set of genes consistently present in O. rhinotracheale and to highlight differences in gene content between phylogenetic clades. A total of 1,457 nonrecombinant SNPs were identified from 157 O. rhinotracheale genomes, and four distinct phylogenetic clades were identified. Isolates clustered by company on the phylogenetic tree, however, and each company had isolates in multiple clades with similar collection dates, indicating that there are multiple O. rhinotracheale strains circulating within each of the companies examined. Additionally, several antimicrobial resistance proteins, putative virulence factors, and the pOR1 plasmid were associated with particular clades and multilocus sequence types, which may explain why the same strains seem to have persisted in the same turkey operations for decades.IMPORTANCE The whole-genome approach enhances our understanding of evolutionary relationships between clinical Ornithobacterium rhinotracheale isolates from different commercial turkey producers and allows for identification of genes associated with virulence, antimicrobial resistance, or mobile genetic elements that are often excluded using traditional typing methods. Additionally, differentiating O. rhinotracheale isolates at the whole-genome level may provide insight into selection of the most appropriate autogenous vaccine strain, or groups of strains, for a given population of clinical isolates.
Asunto(s)
Genoma Bacteriano , Ornithobacterium/genética , Pavos/microbiología , Crianza de Animales Domésticos , Animales , Estudios Transversales , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/veterinaria , Medio Oeste de Estados Unidos , Enfermedades de las Aves de Corral/microbiología , Estudios Retrospectivos , Sudeste de Estados UnidosRESUMEN
BODIPY photocages allow the release of substrates using visible light irradiation. They have the drawback of requiring reasonably good leaving groups for photorelease. Photorelease of alcohols is often accomplished by attachment with carbonate linkages, which upon photorelease liberate CO2 and generate the alcohol. Here, we show that boron-alkylated BODIPY photocages are capable of directly photoreleasing both aliphatic alcohols and phenols upon irradiation via photocleavage of ether linkages. Direct photorelease of a hydroxycoumarin dye was demonstrated in living HeLa cells.
Asunto(s)
Alcoholes , Boro , Compuestos de Boro , Células HeLa , HumanosRESUMEN
Total internal reflection (TIR) optical spectroscopies have been widely used for decades as non-destructive and surface-sensitive measurements of thin films and interfaces. Under TIR conditions, an evanescent wave propagates into the sample layer within a region approximately 50 nm to 2 µm from the interface, which limits the spatial extent of the optical signal. The most common TIR optical spectroscopies are fluorescence (i.e., TIRF) and infrared spectroscopy (i.e., attenuated total reflection infrared). Despite the first report of TIR Raman spectroscopy appearing in 1973, this method has not received the same attention to date. While TIR Raman methods can provide chemical specific information, it has been outshined in many respects by surface-enhanced Raman spectroscopy (SERS). TIR Raman spectroscopy, however, is garnering more interest for analyzing the chemical and physical properties of thin polymer films, self-assembled monolayers (SAMs), multilayered systems, and adsorption at an interface. Herein, we discuss the early experimental and computational work that laid the foundation for recent developments in the use of TIR Raman techniques. Recent applications of TIR Raman spectroscopy as well as modern TIR Raman instruments capable of measuring monolayer-sensitive vibrational modes on smooth metallic surfaces are also discussed. The use of TIR Raman spectroscopy has been on a rise and will continue to push the limits for chemical specific interfacial and thin film measurements. Graphical abstract Total internal reflection (TIR) Raman spectroscopy can extract the chemical and physical information from thin films and adsorbates.
RESUMEN
We demonstrate theoretically and confirm experimentally the mechanism by which spectral narrowing accompanies enhanced spatial resolution in a saturated coherent anti-Stokes Raman scattering (CARS) signal that is demodulated at the third harmonic (3f) of the pump modulation frequency (f). Under these modulation conditions, theory predicts a narrowing of the full width at half-maximum (FWHM) of the CARS spectrum by a factor of 2.0 with respect to that of the spectrum obtained by demodulation at the fundamental frequency. Theory also predicts an improvement of spatial resolution by a factor of 1.7. Experimentally, narrowing of the FWHM of the CARS spectrum of 1,4-bis((E)-2-methylstyryl) benzene (MSB) crystals by a factor of 2.5 is observed upon saturation. Further experimental confirmation is provided from investigating diamond particles, for which spectral narrowing was enhanced by a factor of 2.8 and spatial resolution was enhanced by a factor of 2. Details of the mechanism and execution of the saturated CARS experiment are elucidated and limits to its applicability are suggested, one of which is the conclusion that the saturation approach is not suitable for extraction of harmonics beyond 3f. In this work, we have developed a more comprehensive understanding of the correlation between the observed experimental results and experimental factors than has been previously reported.