RESUMEN
A key barrier to the development of vaccines that induce broadly neutralizing antibodies (bnAbs) against human immunodeficiency virus (HIV) and other viruses of high antigenic diversity is the design of priming immunogens that induce rare bnAb-precursor B cells. The high neutralization breadth of the HIV bnAb 10E8 makes elicitation of 10E8-class bnAbs desirable; however, the recessed epitope within gp41 makes envelope trimers poor priming immunogens and requires that 10E8-class bnAbs possess a long heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. We developed germline-targeting epitope scaffolds with affinity for 10E8-class precursors and engineered nanoparticles for multivalent display. Scaffolds exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens, protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. Thus, germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features.
Asunto(s)
Vacunas contra el SIDA , Anticuerpos Neutralizantes , Anticuerpos Anti-VIH , Proteína gp41 de Envoltorio del VIH , Infecciones por VIH , VIH-1 , Macaca mulatta , Animales , Humanos , Proteína gp41 de Envoltorio del VIH/inmunología , Anticuerpos Anti-VIH/inmunología , Ratones , Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/inmunología , VIH-1/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Infecciones por VIH/virología , Vacunación , Anticuerpos ampliamente neutralizantes/inmunología , Linfocitos B/inmunología , Nanopartículas/química , Femenino , Regiones Determinantes de Complementariedad/inmunología , Epítopos/inmunologíaRESUMEN
Conventional immunization strategies will likely be insufficient for the development of a broadly neutralizing antibody (bnAb) vaccine for HIV or other difficult pathogens because of the immunological hurdles posed, including B cell immunodominance and germinal center (GC) quantity and quality. We found that two independent methods of slow delivery immunization of rhesus monkeys (RMs) resulted in more robust T follicular helper (TFH) cell responses and GC B cells with improved Env-binding, tracked by longitudinal fine needle aspirates. Improved GCs correlated with the development of >20-fold higher titers of autologous nAbs. Using a new RM genomic immunoglobulin locus reference, we identified differential IgV gene use between immunization modalities. Ab mapping demonstrated targeting of immunodominant non-neutralizing epitopes by conventional bolus-immunized animals, whereas slow delivery-immunized animals targeted a more diverse set of epitopes. Thus, alternative immunization strategies can enhance nAb development by altering GCs and modulating the immunodominance of non-neutralizing epitopes.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Linfocitos B/inmunología , Centro Germinal/inmunología , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Inmunización Pasiva , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Linfocitos B/patología , Femenino , Centro Germinal/patología , Centro Germinal/virología , Macaca mulatta , Masculino , Linfocitos T Colaboradores-Inductores/patología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunologíaRESUMEN
Endogenous retroviruses (ERVs) are remnants of ancient parasitic infections and comprise sizable portions of most genomes. Although epigenetic mechanisms silence most ERVs by generating a repressive environment that prevents their expression (heterochromatin), little is known about mechanisms silencing ERVs residing in open regions of the genome (euchromatin). This is particularly important during embryonic development, where induction and repression of distinct classes of ERVs occur in short temporal windows. Here, we demonstrate that transcription-associated RNA degradation by the nuclear RNA exosome and Integrator is a regulatory mechanism that controls the productive transcription of most genes and many ERVs involved in preimplantation development. Disrupting nuclear RNA catabolism promotes dedifferentiation to a totipotent-like state characterized by defects in RNAPII elongation and decreased expression of long genes (gene-length asymmetry). Our results indicate that RNA catabolism is a core regulatory module of gene networks that safeguards RNAPII activity, ERV expression, cell identity, and developmental potency.
Asunto(s)
Retrovirus Endógenos , Retrovirus Endógenos/genética , ARN Nuclear , Epigénesis Genética , Heterocromatina , Expresión GénicaRESUMEN
Understanding how broadly neutralizing antibodies (bnAbs) to HIV envelope (Env) develop during natural infection can help guide the rational design of an HIV vaccine. Here, we described a bnAb lineage targeting the Env V2 apex and the Ab-Env co-evolution that led to development of neutralization breadth. The lineage Abs bore an anionic heavy chain complementarity-determining region 3 (CDRH3) of 25 amino acids, among the shortest known for this class of Abs, and achieved breadth with only 10% nucleotide somatic hypermutation and no insertions or deletions. The data suggested a role for Env glycoform heterogeneity in the activation of the lineage germline B cell. Finally, we showed that localized diversity at key V2 epitope residues drove bnAb maturation toward breadth, mirroring the Env evolution pattern described for another donor who developed V2-apex targeting bnAbs. Overall, these findings suggest potential strategies for vaccine approaches based on germline-targeting and serial immunogen design.
Asunto(s)
Anticuerpos Neutralizantes/fisiología , Linaje de la Célula , Anticuerpos Anti-VIH/fisiología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/química , Regiones Determinantes de Complementariedad , Anticuerpos Anti-VIH/química , HumanosRESUMEN
Current Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) using short-read sequencing strategies resolve expressed Ab transcripts with limited resolution of the C region. In this article, we present the near-full-length AIRR-seq (FLAIRR-seq) method that uses targeted amplification by 5' RACE, combined with single-molecule, real-time sequencing to generate highly accurate (99.99%) human Ab H chain transcripts. FLAIRR-seq was benchmarked by comparing H chain V (IGHV), D (IGHD), and J (IGHJ) gene usage, complementarity-determining region 3 length, and somatic hypermutation to matched datasets generated with standard 5' RACE AIRR-seq using short-read sequencing and full-length isoform sequencing. Together, these data demonstrate robust FLAIRR-seq performance using RNA samples derived from PBMCs, purified B cells, and whole blood, which recapitulated results generated by commonly used methods, while additionally resolving H chain gene features not documented in IMGT at the time of submission. FLAIRR-seq data provide, for the first time, to our knowledge, simultaneous single-molecule characterization of IGHV, IGHD, IGHJ, and IGHC region genes and alleles, allele-resolved subisotype definition, and high-resolution identification of class switch recombination within a clonal lineage. In conjunction with genomic sequencing and genotyping of IGHC genes, FLAIRR-seq of the IgM and IgG repertoires from 10 individuals resulted in the identification of 32 unique IGHC alleles, 28 (87%) of which were previously uncharacterized. Together, these data demonstrate the capabilities of FLAIRR-seq to characterize IGHV, IGHD, IGHJ, and IGHC gene diversity for the most comprehensive view of bulk-expressed Ab repertoires to date.
Asunto(s)
Regiones Determinantes de Complementariedad , Humanos , Regiones Determinantes de Complementariedad/genética , Secuencia de BasesRESUMEN
Immunoglobulins (IGs), critical components of the human immune system, are composed of heavy and light protein chains encoded at three genomic loci. The IG Kappa (IGK) chain locus consists of two large, inverted segmental duplications. The complexity of the IG loci has hindered use of standard high-throughput methods for characterizing genetic variation within these regions. To overcome these limitations, we use long-read sequencing to create haplotype-resolved IGK assemblies in an ancestrally diverse cohort (n = 36), representing the first comprehensive description of IGK haplotype variation. We identify extensive locus polymorphism, including novel single nucleotide variants (SNVs) and novel structural variants harboring functional IGKV genes. Among 47 functional IGKV genes, we identify 145 alleles, 67 of which were not previously curated. We report inter-population differences in allele frequencies for 10 IGKV genes, including alleles unique to specific populations within this dataset. We identify haplotypes carrying signatures of gene conversion that associate with SNV enrichment in the IGK distal region, and a haplotype with an inversion spanning the proximal and distal regions. These data provide a critical resource of curated genomic reference information from diverse ancestries, laying a foundation for advancing our understanding of population-level genetic variation in the IGK locus.
Asunto(s)
Haplotipos , Cadenas kappa de Inmunoglobulina , Polimorfismo de Nucleótido Simple , Humanos , Cadenas kappa de Inmunoglobulina/genética , Frecuencia de los Genes , AlelosRESUMEN
The rat, Rattus norvegicus, has provided an important model for investigation of a range of characteristics of biomedical importance. Here we survey the origins of this species, its introduction into laboratory research and the emergence of genetic and genomic methods that utilize this model organism. Genomic studies have yielded important progress and provided new insight into several biologically important traits. However, some studies have been impeded by the lack of a complete and accurate reference genome for this species. New sequencing and genome assembly methods applied to the rat have resulted in a new reference genome assembly, GRCr8, which is a near telomere-to-telomere assembly of high base level accuracy that incorporates several elements not captured in prior assemblies. As genome assembly methods continue to advance and production costs become a less significant obstacle, genome assemblies for multiple inbred rat strains are emerging. These assemblies will allow a rat pangenome assembly to be constructed which captures all the genetic variation in strains selected for their utility in research and will overcome reference bias, a limitation associated with reliance on a single reference assembly. By this means, the full utility of this model organism to genomic studies will begin to be revealed.
RESUMEN
Gene co-expression networks (GCNs) provide multiple benefits to molecular research including hypothesis generation and biomarker discovery. Transcriptome profiles serve as input for GCN construction and are derived from increasingly larger studies with samples across multiple experimental conditions, treatments, time points, genotypes, etc. Such experiments with larger numbers of variables confound discovery of true network edges, exclude edges and inhibit discovery of context (or condition) specific network edges. To demonstrate this problem, a 475-sample dataset is used to show that up to 97% of GCN edges can be misleading because correlations are false or incorrect. False and incorrect correlations can occur when tests are applied without ensuring assumptions are met, and pairwise gene expression may not meet test assumptions if the expression of at least one gene in the pairwise comparison is a function of multiple confounding variables. The 'one-size-fits-all' approach to GCN construction is therefore problematic for large, multivariable datasets. Recently, the Knowledge Independent Network Construction toolkit has been used in multiple studies to provide a dynamic approach to GCN construction that ensures statistical tests meet assumptions and confounding variables are addressed. Additionally, it can associate experimental context for each edge of the network resulting in context-specific GCNs (csGCNs). To help researchers recognize such challenges in GCN construction, and the creation of csGCNs, we provide a review of the workflow.
Asunto(s)
Redes Reguladoras de Genes , TranscriptomaRESUMEN
Pivotal to the success of any computational experiment is the ability to make reliable predictions about the system under study and the time required to yield these results. Biomolecular interactions is one area of research that sits in every camp of resolution vs the time required, from the quantum mechanical level to in vivo studies. At an approximate midpoint, there is coarse-grained molecular dynamics, for which the Martini force fields have become the most widely used, fast enough to simulate the entire membrane of a mitochondrion though lacking atom-specific precision. While many force fields have been parametrized to account for a specific system under study, the Martini force field has aimed at casting a wider net with more generalized bead types that have demonstrated suitability for broad use and reuse in applications from protein-graphene oxide coassembly to polysaccharides interactions.In this Account, the progressive (Martini versions 1 through 3) and peripheral (Sour Martini, constant pH, Martini Straight, Dry Martini, etc.) developmental trajectory of the Martini force field will be analyzed in terms of self-assembling systems with a focus on short (two to three amino acids) peptide self-assembly in aqueous environments. In particular, this will focus on the effects of the Martini solvent model and compare how changes in bead definitions and mapping have effects on different systems. Considerable effort in the development of Martini has been expended to reduce the "stickiness" of amino acids to better simulate proteins in bilayers. We have included in this Account a short study of dipeptide self-assembly in water, using all mainstream Martini force fields, to examine their ability to reproduce this behavior. The three most recently released versions of Martini and variations in their solvents are used to simulate in triplicate all 400 dipeptides of the 20 gene-encoded amino acids. The ability of the force fields to model the self-assembly of the dipeptides in aqueoues environments is determined by the measurement of the aggregation propensity, and additional descriptors are used to gain further insight into the dipeptide aggregates.
Asunto(s)
Simulación de Dinámica Molecular , Péptidos , Proteínas/química , Solventes , Agua/química , Aminoácidos , DipéptidosRESUMEN
BACKGROUND: Despite a clear appreciation of the impact of human pathogens on community health, efforts to understand pathogen dynamics within populations often follow a narrow-targeted approach and rely on the deployment of specific molecular probes for quantitative detection or rely on clinical detection and reporting. MAIN TEXT: Genomic analysis of wastewater samples for the broad detection of viruses, bacteria, fungi, and antibiotic resistance genes of interest/concern is inherently difficult, and while deep sequencing of wastewater provides a wealth of information, a robust and cooperative foundation is needed to support healthier communities. In addition to furthering the capacity of high-throughput sequencing wastewater-based epidemiology to detect human pathogens in an unbiased and agnostic manner, it is critical that collaborative networks among public health agencies, researchers, and community stakeholders be fostered to prepare communities for future public health emergencies or for the next pandemic. A more inclusive public health infrastructure must be built for better data reporting where there is a global human health risk burden. CONCLUSIONS: As wastewater platforms continue to be developed and refined, high-throughput sequencing of human pathogens in wastewater samples will emerge as a gold standard for understanding community health.
Asunto(s)
Virus , Aguas Residuales , Humanos , Monitoreo Epidemiológico Basado en Aguas Residuales , Virus/genética , Bacterias/genética , Farmacorresistencia Microbiana/genéticaRESUMEN
Chronic pain in humans is associated with impaired working memory but it is not known whether this is the case in long-lived companion animals, such as dogs, who are especially vulnerable to developing age-related chronic pain conditions. Pain-related impairment of cognitive function could have detrimental effects on an animal's ability to engage with its owners and environment or to respond to training or novel situations, which may in turn affect its quality of life. This study compared the performance of 20 dogs with chronic pain from osteoarthritis and 21 healthy control dogs in a disappearing object task of spatial working memory. Female neutered osteoarthritic dogs, but not male neutered osteoarthritic dogs, were found to have lower predicted probabilities of successfully performing the task compared to control dogs of the same sex. In addition, as memory retention interval in the task increased, osteoarthritic dogs showed a steeper decline in working memory performance than control dogs. This suggests that the effects of osteoarthritis, and potentially other pain-related conditions, on cognitive function are more clearly revealed in tasks that present a greater cognitive load. Our finding that chronic pain from osteoarthritis may be associated with impaired working memory in dogs parallels results from studies of human chronic pain disorders. That female dogs may be particularly prone to these effects warrants further investigation.
Asunto(s)
Dolor Crónico , Enfermedades de los Perros , Osteoartritis , Humanos , Perros , Femenino , Animales , Memoria a Corto Plazo , Dolor Crónico/veterinaria , Calidad de Vida , Memoria Espacial , Osteoartritis/complicaciones , Osteoartritis/veterinariaRESUMEN
A causal decomposition analysis allows researchers to determine whether the difference in a health outcome between two groups can be attributed to a difference in each group's distribution of one or more modifiable mediator variables. With this knowledge, researchers and policymakers can focus on designing interventions that target these mediator variables. Existing methods for causal decomposition analysis either focus on one mediator variable or assume that each mediator variable is conditionally independent given the group label and the mediator-outcome confounders. In this article, we propose a flexible causal decomposition analysis method that can accommodate multiple correlated and interacting mediator variables, which are frequently seen in studies of health behaviors and studies of environmental pollutants. We extend a Monte Carlo-based causal decomposition analysis method to this setting by using a multivariate mediator model that can accommodate any combination of binary and continuous mediator variables. Furthermore, we state the causal assumptions needed to identify both joint and path-specific decomposition effects through each mediator variable. To illustrate the reduction in bias and confidence interval width of the decomposition effects under our proposed method, we perform a simulation study. We also apply our approach to examine whether differences in smoking status and dietary inflammation score explain any of the Black-White differences in incident diabetes using data from a national cohort study.
RESUMEN
Mediation analysis is an increasingly popular statistical method for explaining causal pathways to inform intervention. While methods have increased, there is still a dearth of robust mediation methods for count outcomes with excess zeroes. Current mediation methods addressing this issue are computationally intensive, biased, or challenging to interpret. To overcome these limitations, we propose a new mediation methodology for zero-inflated count outcomes using the marginalized zero-inflated Poisson (MZIP) model and the counterfactual approach to mediation. This novel work gives population-average mediation effects whose variance can be estimated rapidly via delta method. This methodology is extended to cases with exposure-mediator interactions. We apply this novel methodology to explore if diabetes diagnosis can explain BMI differences in healthcare utilization and test model performance via simulations comparing the proposed MZIP method to existing zero-inflated and Poisson methods. We find that our proposed method minimizes bias and computation time compared to alternative approaches while allowing for straight-forward interpretations.
Asunto(s)
Simulación por Computador , Análisis de Mediación , Humanos , Distribución de Poisson , Modelos Estadísticos , Índice de Masa Corporal , Diabetes Mellitus , Sesgo , CausalidadRESUMEN
BACKGROUND: Bacterial vaginosis (BV) is a highly prevalent vaginal infection. OBJECTIVES: Primary objectives of this study were to examine treatment patterns among female patients with Medicaid coverage who were diagnosed with incident BV, the frequency of BV-associated complications, and health care resource utilization (HCRU) and associated costs of incident BV and its recurrence. Secondary objectives were to identify predictors of total all-cause health care costs and number of treatment courses. METHODS: Female patients aged 12-49 years with an incident vaginitis diagnosis and ≥1 pharmacy claim for a BV medication were selected from the Merative MarketScan Medicaid database (2017-2020). Additional treatment courses were evaluated during a ≥12-month follow-up period, in which new cases of BV-associated complications and HCRU and the associated costs were also measured. Generalized linear models were used to identify baseline predictors of total all-cause health care costs and number of treatment courses. RESULTS: An incident vaginitis diagnosis and ≥1 BV medication claim were present in 114 313 patients (mean age: 28.4 years; 48.6% black). During the follow-up, 56.6% had 1 treatment course, 24.9% had 2, 10.2% had 3, and 8.3% had ≥4; 43.4% had BV recurrence. Oral metronidazole (88.5%) was the most frequently prescribed medication. Nearly 1 in 5 had a new occurrence of a BV-associated complication; most (76.6%) were sexually transmitted infections (STIs). Total all-cause and BV-related costs averaged $5794 and $300, respectively, per patient; both increased among those with more treatment courses. Older age, pregnancy, comorbidity, any STIs, postprocedural gynecological infection (PGI), and infertility were predictive of higher total all-cause health care costs, while race/ethnicity other than white was predictive of lower costs. Older age, black race, any STIs, pelvic inflammatory disease, and PGI were predictive of >1 treatment courses. CONCLUSION AND RELEVANCE: The high recurrence of BV represents an unmet need in women's health care and better treatments are necessary.
Asunto(s)
Enfermedades de Transmisión Sexual , Vaginitis , Vaginosis Bacteriana , Embarazo , Femenino , Humanos , Estados Unidos/epidemiología , Adulto , Vaginosis Bacteriana/tratamiento farmacológico , Vaginosis Bacteriana/epidemiología , Vaginosis Bacteriana/microbiología , Medicaid , Estrés Financiero , Costos de la Atención en SaludRESUMEN
Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector.
Asunto(s)
Aedes/genética , Infecciones por Arbovirus/virología , Arbovirus , Genoma de los Insectos/genética , Genómica/normas , Control de Insectos , Mosquitos Vectores/genética , Mosquitos Vectores/virología , Aedes/virología , Animales , Infecciones por Arbovirus/transmisión , Arbovirus/aislamiento & purificación , Variaciones en el Número de Copia de ADN/genética , Virus del Dengue/aislamiento & purificación , Femenino , Variación Genética/genética , Genética de Población , Glutatión Transferasa/genética , Resistencia a los Insecticidas/efectos de los fármacos , Masculino , Anotación de Secuencia Molecular , Familia de Multigenes/genética , Piretrinas/farmacología , Estándares de Referencia , Procesos de Determinación del Sexo/genéticaRESUMEN
BACKGROUND: Direct oral anticoagulants (DOACs) are the preferred treatment for venous thromboembolism (VTE). However, DOAC use in patients with a BMI greater than 40 kg/m2 has not been well studied despite the growing prevalence of obesity, and current literature is often underpowered. METHODS: This multicenter, retrospective, observational study evaluated patients 18 years and older who received DOACs for acute VTE treatment. Patients receiving DOACs for recurrent VTE or for failure of another agent were excluded. The primary efficacy outcome was recurrent VTE and the primary safety outcome was major bleeding within 12 months (or one month after stopping anticoagulation therapy). A propensity score analysis was performed to balance patient characteristics and evaluate the primary endpoints by BMI group. Time-to-event outcomes were analyzed using weighted Kaplan-Meier curves. RESULTS: There were 165 patients with a BMI of at least 40 kg/m2 and 320 patients with a BMI less than 40 kg/m2. The majority received apixaban (373, 77%). Recurrent VTE occurred in 5 (3.0%) and 13 (4.1%) of patients in the higher and lower BMI groups, respectively (adjusted OR: 0.66; 95% CI: 0.16-2.69). Major bleeding occurred in 5 (3.0%) and 15 (4.7%) of patients in the higher and lower BMI groups, respectively (adjusted OR: 1.19; 95% CI: 0.36-3.92). CONCLUSION: There was no significant difference in VTE recurrence or major bleeding related to BMI among patients treated with DOACs. This study showed that DOACs may be a safe and effective VTE treatment option in patients with obesity.
Asunto(s)
Tromboembolia Venosa , Humanos , Tromboembolia Venosa/tratamiento farmacológico , Anticoagulantes/uso terapéutico , Estudios Retrospectivos , Hemorragia/inducido químicamente , Obesidad/tratamiento farmacológico , Administración OralRESUMEN
Individuals with serious mental illnesses (SMIs) face safety risks related to their mental health conditions that are often compounded by experiences of trauma, victimization, residence in impoverished neighborhoods, and histories of homelessness. Stigma and safety challenges significantly impact community integration for individuals with SMIs, particularly women, who often bear a disproportionate burden of vulnerability, gender-based stigma, violence, and other inequalities. This study investigates how women with SMIs engage in the meaning-making of their safety and stigma experiences that, in turn, influence their community integration. From a large multi-site study exploring community experiences of racially/ethnically diverse participants with SMIs, a subsample of 28 cis and trans-gender women, who reported experiencing gendered stigma and a lack of safety, were chosen for the current study. The interviews were analyzed using modified principles of Interpretive Phenomenological Analysis (IPA) to understand how women with SMIs made meaning of their safety and stigma encounters in their families, communities, and neighborhoods. IPA analysis resulted in the emergence of themes within a broad category of safety that represented participants' meaning-making about their physical safety and stigma experiences. Specifically, we used the broad themes from an existing framework of safety called 'Navigating Safety' model as sensitizing concepts for our analysis. Physical and psychological aspects of safety for this study were experienced in tandem whereby the women made sense of how their experiences of a lack of physical safety in multiple contexts shaped their sense of self, internalized stigma, and their social relationships. Within the broad theme of physical safety, participants described unsafe neighborhoods, exposure to domestic and intimate partner violence, and vulnerability to sexual violence. Additionally, under psychological safety, we identified how gender-based norms, race and ethnicity, sources of stigma (internalized, familial, and societal), and social isolation contributed to their mental health and social relationships (particularly with family). These findings highlight how the compounding influence of the intersection of multiple stigmatized identities exerts safety challenges on the lives and community experiences of women with SMIs. Focusing on access and affordability of appropriate gender-responsive resources for women, including trauma-informed care, could reduce hospitalizations, mental health symptoms, and stigma so they can safely integrate into their communities.
RESUMEN
The latent viral reservoir (LVR) remains a major barrier to HIV-1 curative strategies. It is unknown whether receiving a liver transplant from a donor with HIV might lead to an increase in the LVR because the liver is a large lymphoid organ. We found no differences in intact provirus, defective provirus, or the ratio of intact to defective provirus between recipients with ART-suppressed HIV who received a liver from a donor with (n = 19) or without HIV (n = 10). All measures remained stable from baseline by 1 year posttransplant. These data demonstrate that the LVR is stable after liver transplantation in people with HIV. Clinical Trials Registration. NCT02602262 and NCT03734393.