Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochem J ; 421(2): 243-51, 2009 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-19422324

RESUMEN

The IKK [IkappaB (inhibitory kappaB) kinase] complex is a key regulatory component of NF-kappaB (nuclear factor kappaB) activation and is responsible for mediating the degradation of IkappaB, thereby allowing nuclear translocation of NF-kappaB and transcription of target genes. NEMO (NF-kappaB essential modulator), the regulatory subunit of the IKK complex, plays a pivotal role in this process by integrating upstream signals, in particular the recognition of polyubiquitin chains, and relaying these to the activation of IKKalpha and IKKbeta, the catalytic subunits of the IKK complex. The oligomeric state of NEMO is controversial and the mechanism by which it regulates activation of the IKK complex is poorly understood. Using a combination of hydrodynamic techniques we now show that apo-NEMO is a highly elongated, dimeric protein that is in weak equilibrium with a tetrameric assembly. Interaction with peptides derived from IKKbeta disrupts formation of the tetrameric NEMO complex, indicating that interaction with IKKalpha and IKKbeta and tetramerization are mutually exclusive. Furthermore, we show that NEMO binds to linear di-ubiquitin with a stoichiometry of one molecule of di-ubiquitin per NEMO dimer. This stoichiometry is preserved in a construct comprising the second coiled-coil region and the leucine zipper and in one that essentially spans the full-length protein. However, our data show that at high di-ubiquitin concentrations a second weaker binding site becomes apparent, implying that two different NEMO-di-ubiquitin complexes are formed during the IKK activation process. We propose that the role of these two complexes is to provide a threshold for activation, thereby ensuring sufficient specificity during NF-kappaB signalling.


Asunto(s)
Quinasa I-kappa B/química , Péptidos y Proteínas de Señalización Intracelular/química , Ubiquitina/metabolismo , Animales , Sitios de Unión , Humanos , Quinasa I-kappa B/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cinética , Ratones , Multimerización de Proteína , Transducción de Señal , Ubiquitina/química
3.
J Biol Chem ; 277(12): 10121-8, 2002 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-11796733

RESUMEN

The phagocyte NADPH oxidase is a multiprotein enzyme whose subunits are partitioned between the cytosol and plasma membrane in resting cells. Upon exposure to appropriate stimuli multiple phosphorylation events in the cytosolic components take place, which induce rearrangements in a number of protein-protein interactions, ultimately leading to translocation of the cytoplasmic complex to the membrane. To understand the molecular mechanisms that underlie the assembly and activation process we have carried out a detailed study of the protein-protein interactions that occur in the p40-p47-p67(phox) complex of the resting oxidase. Here we show that this complex contains one copy of each protein, which assembles to form a heterotrimeric complex. The apparent high molecular weight of this complex, as observed by gel filtration studies, is due to an extended, non-globular shape rather than to the presence of multiple copies of any of the proteins. Isothermal titration calorimetry measurements of the interactions between the individual components of this complex demonstrate that p67(phox) is the primary binding partner of p47(phox) in the resting state. These findings, in combination with earlier reports, allow us to propose a model for the architecture of the resting complex in which p67(phox) acts as the bridging molecule that connects p40(phox) and p47(phox).


Asunto(s)
Fosfoproteínas/metabolismo , Fosfoproteínas/fisiología , Secuencias de Aminoácidos , Calorimetría , Membrana Celular/metabolismo , Cromatografía en Gel , Dimerización , Humanos , Cinética , Luz , Modelos Genéticos , NADPH Oxidasas/química , NADPH Oxidasas/metabolismo , Fagocitosis , Fosfoproteínas/química , Unión Proteica , Estructura Terciaria de Proteína , Dispersión de Radiación , Termodinámica , Ultracentrifugación
4.
J Biol Chem ; 277(32): 28439-45, 2002 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-12048186

RESUMEN

The elimination of mitotic kinase activity at the end of mitosis is essential for progression to the next stage of the eukaryotic cell cycle. In budding yeast, this process is controlled by a regulatory cascade called the mitotic exit network. Extensive genetic data indicate that mitotic exit network activity is determined by a GTP-binding protein, Tem1, and its putative regulators, Bub2, Bfa1, and Lte1. Here we describe the purification and in vitro activities of Tem1, Bub2, and Bfa1. We describe the nucleotide binding properties of Tem1 and characterize its intrinsic GTPase activity. The combination of Bfa1 and Bub2 acts as a two-component GTPase-activating protein for Tem1. In the absence of Bub2, Bfa1 inhibits the GTPase and GTP exchange activities of Tem1. This inhibition is elicited by either the N- or C-terminal regions of Bfa1, which also retain some ability to co-activate GTPase activity in the presence of Bub2. Although the C-terminal region of Bfa1 binds to Bub2, no interaction of the N-terminal half of Bfa1 with Bub2 was detected despite their combined GAP activity. Therefore, we propose that Bfa1 acts both as an adaptor to connect Bub2 and Tem1 and as an allosteric effector that facilitates this interaction.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas del Citoesqueleto , Proteínas Fúngicas/metabolismo , Mitosis , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomycetales/metabolismo , Relación Dosis-Respuesta a Droga , GTP Fosfohidrolasas/metabolismo , Glutatión Transferasa/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólisis , Cinética , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Saccharomycetales/fisiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA