Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Can J Microbiol ; 64(10): 695-705, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29775543

RESUMEN

Soil is an important reservoir for Listeria monocytogenes, a foodborne pathogen implicated in numerous produce-related outbreaks. Our objectives were to (i) compare the survival of L. monocytogenes among three soils, (ii) compare the native bacterial communities across these soils, and (iii) investigate relationships between L. monocytogenes survival, native bacterial communities, and soil properties. Listeria spp. populations were monitored on PALCAM agar in three soils inoculated with L. monocytogenes (∼5 × 106 CFU/g): conventionally farmed (CS), grassland transitioning to conventionally farmed (TS), and uncultivated grassland (GS). Bacterial diversity of the soils was analyzed using 16S rRNA targeted amplicon sequencing. A 2 log reduction of Listeria spp. was observed in all soils within 10 days, but at a significantly lower rate in GS (Fisher's least significant difference test; p < 0.05). Survival correlated with increased moisture and a neutral pH. GS showed the highest microbial diversity. Acidobacteria was the dominant phylum differentiating CS and TS from GS, and was negatively correlated with pH, carbon, nitrogen, and moisture. High moisture content and neutral pH are likely to increase the ability of L. monocytogenes to persist in soil. This study confirmed that native bacterial communities and short-term survival of L. monocytogenes varies across soils.


Asunto(s)
Listeria monocytogenes/crecimiento & desarrollo , Microbiología del Suelo , Concentración de Iones de Hidrógeno , Listeria monocytogenes/aislamiento & purificación , ARN Ribosómico 16S/genética
2.
J Environ Qual ; 47(4): 914-921, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30025052

RESUMEN

Manure-based soil amendments (MBSAs) must be managed optimally to maximize N concentration and availability while minimizing environmental impacts (e.g., greenhouse gas [GHG]) emissions. We conducted an 83-d incubation study to determine the effects of different moisture (60 or 120% of water-holding capacity [WHC]) and temperature (4 or 20°C) conditions during the decomposition of MBSAs. We measured CO, CH, and NO emissions and total C, total N, NH, and NO during the decomposition of chicken MBSA and two understudied MBSAs (turkey and horse). Total N decreased by 38 to 50% after 83 d in poultry MBSAs incubated at 20°C and 120% WHC, whereas NH concentration peaked at 30 d. In contrast, poultry MBSAs incubated at 60% WHC or 4°C had limited N losses but higher CO and/or NO emissions. Horse MBSA incubated for 83 d at 20°C and 60% WHC had two- to threefold higher C losses, 53 to 68% higher total N, and two to three orders of magnitude higher NO concentrations than at wetter and/or colder incubation conditions. Horse MBSA incubated at 20°C and 60% WHC had 13- to 130-fold (CH) and 4- to 70-fold (NO) higher emissions than horse MBSA incubated at 4°C. In contrast, CH emissions peaked at 120% WHC and 20°C. Overall, incubating horse MBSA at 20°C and 60% WHC minimized tradeoffs between maximizing N concentration and availability and minimizing GHG emissions during decomposition, whereas we found no ideal decomposition conditions for poultry MBSAs.


Asunto(s)
Ciclo del Carbono , Estiércol , Nitrógeno/química , Suelo/química , Animales , Carbono , Dióxido de Carbono , Caballos , Aves de Corral , Temperatura
3.
J Environ Manage ; 202(Pt 1): 287-298, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28738202

RESUMEN

Agroforestry management in smallholder agriculture can provide climate change mitigation and adaptation benefits and has been promoted as 'climate-smart agriculture' (CSA), yet has generally been left out of international and voluntary carbon (C) mitigation agreements. A key reason for this omission is the cost and uncertainty of monitoring C at the farm scale in heterogeneous smallholder landscapes. A largely overlooked alternative is to monitor C at more aggregated scales and develop C contracts with groups of land owners, community organizations or C aggregators working across entire landscapes (e.g., watersheds, communities, municipalities, etc.). In this study we use a 100-km2 agricultural area in El Salvador to demonstrate how high-spatial resolution optical satellite imagery can be used to map aboveground woody biomass (AGWB) C at the landscape scale with very low uncertainty (95% probability of a deviation of less than 1%). Uncertainty of AGWB-C estimates remained low (<5%) for areas as small as 250 ha, despite high uncertainties at the farm and plot scale (34-99%). We estimate that CSA adoption could more than double AGWB-C stocks on agricultural lands in the study area, and that utilizing AGWB-C maps to target denuded areas could increase C gains per unit area by 46%. The potential value of C credits under a plausible adoption scenario would range from $38,270 to $354,000 yr-1 for the study area, or about $13 to $124 ha-1 yr-1, depending on C prices. Considering farm sizes in smallholder landscapes rarely exceed 1-2 ha, relying solely on direct C payments to farmers may not lead to widespread CSA adoption, especially if farm-scale monitoring is required. Instead, landscape-scale approaches to C contracting, supported by satellite-based monitoring methods such as ours, could be a key strategy to reduce costs and uncertainty of C monitoring in heterogeneous smallholder landscapes, thereby incentivizing more widespread CSA adoption.


Asunto(s)
Carbono , Cambio Climático , Conservación de los Recursos Naturales , Agricultura , Clima , Ecosistema , El Salvador , Incertidumbre
4.
J Environ Manage ; 192: 203-214, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28161628

RESUMEN

Nitrogen (N) fertilization of forests for increasing carbon sequestration and wood volume is expected to influence soil greenhouse gas (GHG) emissions, especially to increase N2O emissions. As biochar application is known to affect soil GHG emissions, we investigated the effect of biochar application, with and without N fertilization, to a forest soil on GHG emissions in a controlled laboratory study. We found that biochar application at high (10%) application rates increased CO2 and N2O emissions when applied without urea-N fertilizer. At both low (1%) and high biochar (10%) application rates CH4 consumption was reduced when applied without urea-N fertilizer. Biochar application with urea-N fertilization did not increase CO2 emissions compared to biochar amended soil without fertilizer. In terms of CO2-eq, the net change in GHG emissions was mainly controlled by CO2 emissions, regardless of treatment, with CH4 and N2O together accounting for less than 1.5% of the total emissions.


Asunto(s)
Nitrógeno , Suelo , Dióxido de Carbono , Fertilizantes , Bosques , Metano , Óxido Nitroso
6.
Proc Natl Acad Sci U S A ; 107(46): 19661-6, 2010 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-20453198

RESUMEN

Potential interactions between food production and climate mitigation are explored for two situations in sub-Saharan Africa, where deforestation and land degradation overlap with hunger and poverty. Three agriculture intensification scenarios for supplying nitrogen to increase crop production (mineral fertilizer, herbaceous legume cover crops--green manures--and agroforestry--legume improved tree fallows) are compared to baseline food production, land requirements to meet basic caloric requirements, and greenhouse gas emissions. At low population densities and high land availability, food security and climate mitigation goals are met with all intensification scenarios, resulting in surplus crop area for reforestation. In contrast, for high population density and small farm sizes, attaining food security and reducing greenhouse gas emissions require mineral fertilizers to make land available for reforestation; green manure or improved tree fallows do not provide sufficient increases in yields to permit reforestation. Tree fallows sequester significant carbon on cropland, but green manures result in net carbon dioxide equivalent emissions because of nitrogen additions. Although these results are encouraging, agricultural intensification in sub-Saharan Africa with mineral fertilizers, green manures, or improved tree fallows will remain low without policies that address access, costs, and lack of incentives. Carbon financing for small-holder agriculture could increase the likelihood of success of Reducing Emissions from Deforestation and Forest Degradation in Developing Countries programs and climate change mitigation but also promote food security in the region.


Asunto(s)
Agricultura/métodos , Cambio Climático , Abastecimiento de Alimentos , África del Sur del Sahara , Carbono/análisis , Huella de Carbono , Calentamiento Global , Óxido Nitroso/análisis , Zea mays/crecimiento & desarrollo
7.
J Environ Monit ; 14(3): 738-42, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22293996

RESUMEN

The development of effective agricultural monitoring networks is essential to track, anticipate and manage changes in the social, economic and environmental aspects of agriculture. We welcome the perspective of Lindenmayer and Likens (J. Environ. Monit., 2011, 13, 1559) as published in the Journal of Environmental Monitoring on our earlier paper, "Monitoring the World's Agriculture" (Sachs et al., Nature, 2010, 466, 558-560). In this response, we address their three main critiques labeled as 'the passive approach', 'the problem with uniform metrics' and 'the problem with composite metrics'. We expand on specific research questions at the core of the network design, on the distinction between key universal and site-specific metrics to detect change over time and across scales, and on the need for composite metrics in decision-making. We believe that simultaneously measuring indicators of the three pillars of sustainability (environmentally sound, social responsible and economically viable) in an effectively integrated monitoring system will ultimately allow scientists and land managers alike to find solutions to the most pressing problems facing global food security.


Asunto(s)
Agricultura/estadística & datos numéricos , Monitoreo del Ambiente/métodos
8.
J Air Waste Manag Assoc ; 68(4): 377-388, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29215969

RESUMEN

Manure-based soil amendments (herein "amendments") are important fertility sources, but differences among amendment types and management can significantly affect their nutrient value and environmental impacts. A 6-month in situ decomposition experiment was conducted to determine how protection from wintertime rainfall affected nutrient losses and greenhouse gas (GHG) emissions in poultry (broiler chicken and turkey) and horse amendments. Changes in total nutrient concentration were measured every 3 months, changes in ammonium (NH4+) and nitrate (NO3-) concentrations every month, and GHG emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) every 7-14 days. Poultry amendments maintained higher nutrient concentrations (except for K), higher emissions of CO2 and N2O, and lower CH4 emissions than horse amendments. Exposing amendments to rainfall increased total N and NH4+ losses in poultry amendments, P losses in turkey and horse amendments, and K losses and cumulative N2O emissions for all amendments. However, it did not affect CO2 or CH4 emissions. Overall, rainfall exposure would decrease total N inputs by 37% (horse), 59% (broiler chicken), or 74% (turkey) for a given application rate (wet weight basis) after 6 months of decomposition, with similar losses for NH4+ (69-96%), P (41-73%), and K (91-97%). This study confirms the benefits of facilities protected from rainfall to reduce nutrient losses and GHG emissions during amendment decomposition. IMPLICATIONS: The impact of rainfall protection on nutrient losses and GHG emissions was monitored during the decomposition of broiler chicken, turkey, and horse manure-based soil amendments. Amendments exposed to rainfall had large ammonium and potassium losses, resulting in a 37-74% decrease in N inputs when compared with amendments protected from rainfall. Nitrous oxide emissions were also higher with rainfall exposure, although it had no effect on carbon dioxide and methane emissions. Overall, this work highlights the benefits of rainfall protection during amendment decomposition to reduce nutrient losses and GHG emissions.


Asunto(s)
Gases de Efecto Invernadero , Caballos , Estiércol/análisis , Aves de Corral , Animales , Dióxido de Carbono/análisis , Ambiente , Fertilizantes , Metano/análisis , Nitratos , Óxido Nitroso/análisis , Eliminación de Residuos , Suelo
9.
Funct Plant Biol ; 35(3): 228-235, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-32688777

RESUMEN

The effects of colonisation of roots by arbuscular mycorrhizal fungi (AMF) on soil respiration, plant growth, nutrition, and soil microbial communities were assessed using a mycorrhiza-defective tomato (Solanum lycopersicum L.) mutant and its mycorrhizal wild-type progenitor. Plants were grown in rhizocosms in an automated respiration monitoring system over the course of the experiment (79 days). Soil respiration was similar in the two tomato genotypes, and between P treatments with plants. Mycorrhizal colonisation increased P and Zn content and decreased root biomass, but did not affect aboveground plant biomass. Soil microbial biomass C and soil microbial communities based on phospholipid fatty acid (PLFA) analysis were similar across all treatments, suggesting that the two genotypes differed little in their effect on soil activity. Although approximately similar amounts of C may have been expended belowground in both genotypes, they may have differed in the relative C allocation to root construction v. respiration. Further, net soil respiration did not differ between the two tomato genotypes, but root dry weight was lower in mycorrhizal roots, and respiration of mycorrhizal roots per unit dry weight was higher than nonmycorrhizal roots. This indicates that the AM contribution to soil respiration may indeed be significant, and nutrient uptake per unit C expenditure belowground in this experiment appeared to be higher in mycorrhizal plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA