Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 23(3): 751-63, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19028839

RESUMEN

In this study, the inhibitor 2 of protein phosphatase 2A (I2PP2A) was identified in vitro and in situ as a ceramide-binding protein, which exhibits stereoisomer specificity and fatty acid chain length preference. Site- directed mutagenesis coupled with structural details of I2PP2A suggested that VIK 207-209 residues localized on helix 7 are important for ceramide binding and single mutation of K209D altered this interaction. Notably, I2PP2A-ceramide binding decreased the association between PP2A and the inhibitor, preventing the inhibition of PP2A activity in vitro. In addition, studies in A549 human lung cancer cells revealed that ceramide mediates c-Myc degradation via its PP2A-dependent dephosphorylation at S62, and treatment with okadaic acid and expression of c-Myc mutants with S62A or S62D conversions resulted in resistance to ceramide-mediated degradation. Importantly, whereas down-regulation of I2PP2A enhanced PP2A-mediated c-Myc degradation in response to ceramide, ectopic expression of wild-type I2PP2A but not of its K209D mutant protected this degradation in A549 cells. Moreover, expression of wild-type I2PP2A prevented the growth-inhibitory effects of ceramide both against A549 cells and xenograft-driven tumors in situ and in vivo compared with that in controls. Thus, these results suggest that direct interaction of I2PP2A with ceramide plays important biological roles via the regulation of PP2A activity and signaling, which in turn control ceramide-mediated degradation of c-Myc and antiproliferation.


Asunto(s)
Ceramidas/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteína Fosfatasa 2/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Proteínas de Unión al ADN , Regulación hacia Abajo , Regulación de la Expresión Génica/fisiología , Chaperonas de Histonas , Humanos , Mutagénesis Sitio-Dirigida , Unión Proteica , Proteína Fosfatasa 2/genética , Transducción de Señal , Esfingolípidos/metabolismo
2.
J Lipid Res ; 48(3): 600-8, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17164222

RESUMEN

Ceramidases (CDases) hydrolyze ceramide to sphingosine (SPH) and fatty acid. Pseudomonas CDase (pCDase) is a homolog of mammalian neutral ceramidases and may play roles in disease pathogenesis. In this study, pCDase was cloned and expressed in Escherichia coli (E. coli). The expressed recombinant pCDase was solubilized by optimizing several factors, including culture medium, the concentration of isopropyl-beta-thiogalactopyranoside (IPTG), temperature, and time of induction, which were identified to be critical for the optimal production of recombinant pCDase. The recombinant pCDase was purified using nickel-nitrilotriacetic acid affinity, phenyl-Sepharose, and Q-Sepharose column chromatography, which gave an overall yield of 0.45 mg/l purified protein of starting culture. The activity of the recombinant pCDase followed classical Michaelis-Menten kinetics, with optimum activity in the neutral pH range. Both the hydrolytic and the reverse activities of CDase were stimulated by calcium with an affinity constant (K(a)) of 1.5 microM. Kinetics studies showed that calcium caused a decrease of K(m) and an increase in V(max) of pCDase. Calcium and D-erythro-sphingosine caused significant changes in the near ultraviolet circular dichroism (CD) spectra and the changes were inhibited in the presence of EGTA. These results identify important interactions between calcium and pCDase, which may play an essential role in the interaction of pCDase and its substrate.


Asunto(s)
Amidohidrolasas/aislamiento & purificación , Calcio/metabolismo , Pseudomonas/enzimología , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Ceramidasas , Ceramidas/metabolismo , Cromatografía en Agarosa , Dicroismo Circular , Clonación Molecular , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Pseudomonas/genética , Pseudomonas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Esfingosina/metabolismo
3.
Biochemistry ; 45(38): 11247-56, 2006 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-16981685

RESUMEN

The neutral sphingomyelinases (N-SMases) are considered major candidates for mediating the stress-induced production of ceramide, and N-SMase activity has been identified, characterized, and cloned from bacteria, yeast, and mammalian cells. Although the level of identity between these enzymes is low, a number of key residues thought to be involved in metal binding and catalysis are conserved. This has led to the suggestion of a common catalytic mechanism, and thus, these enzymes are considered to form an extended family of N-SMases. Despite considerable research into N-SMase activity in cell culture and various tissues, the lack, until recently, of molecular identification of specific N-SMase enzymes had precluded specific insights into the regulation, physiological, and pathological roles of these proteins. In this review, we summarize, for the first time, current knowledge of the N-SMase family, focusing on cloned members from bacteria, yeast, and mammalian cells. We also briefly consider the major future directions for N-SMase research which promises highly significant and specific insight into sphingolipid-mediated functions.


Asunto(s)
Esfingomielina Fosfodiesterasa/metabolismo , Secuencia de Aminoácidos , Animales , Bacterias/enzimología , Humanos , Datos de Secuencia Molecular , Transducción de Señal , Esfingomielina Fosfodiesterasa/química , Levaduras/enzimología
4.
Biochemistry ; 42(16): 4658-68, 2003 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-12705829

RESUMEN

The enzyme GMD from Pseudomonas aeruginosa catalyzes the committed step in the synthesis of the exopolysaccharide alginate. Alginate is a major component of P. aeruginosa biofilms that protect the bacteria from the host immune response and antibiotic therapy. The 1.55 A crystal structure of GMD in ternary complex with its cofactor NAD(H) and product GDP-mannuronic acid reveals that the enzyme forms a domain-swapped dimer with two polypeptide chains contributing to each active site. The extensive dimer interface provides multiple opportunities for intersubunit communication. Comparison of the GMD structure with that of UDP-glucose dehydrogenase reveals the structural basis of sugar binding specificity that distinguishes these two related enzyme families. The high-resolution structure of GMD provides detailed information on the active site of the enzyme and a template for structure-based inhibitor design.


Asunto(s)
Deshidrogenasas de Carbohidratos/química , Modelos Moleculares , Pseudomonas aeruginosa/enzimología , Alginatos/metabolismo , Sitios de Unión , Deshidrogenasas de Carbohidratos/metabolismo , Cristalografía por Rayos X , Dimerización , Enlace de Hidrógeno , Ligandos , Modelos Químicos , NAD/química , NAD/metabolismo , Azúcares de Nucleósido Difosfato/química , Azúcares de Nucleósido Difosfato/metabolismo , Uridina Difosfato Glucosa Deshidrogenasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA