Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Comput Chem ; 37(21): 1973-82, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27292100

RESUMEN

Clustering methods have been widely used to group together similar conformational states from molecular simulations of biomolecules in solution. For applications such as the interaction of a protein with a surface, the orientation of the protein relative to the surface is also an important clustering parameter because of its potential effect on adsorbed-state bioactivity. This study presents cluster analysis methods that are specifically designed for systems where both molecular orientation and conformation are important, and the methods are demonstrated using test cases of adsorbed proteins for validation. Additionally, because cluster analysis can be a very subjective process, an objective procedure for identifying both the optimal number of clusters and the best clustering algorithm to be applied to analyze a given dataset is presented. The method is demonstrated for several agglomerative hierarchical clustering algorithms used in conjunction with three cluster validation techniques. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas/química , Algoritmos , Análisis por Conglomerados , Conformación Proteica
2.
J Chem Phys ; 143(14): 144105, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26472361

RESUMEN

The recently developed "temperature intervals with global exchange of replicas" (TIGER2) accelerated sampling method is found to have inaccuracies when applied to systems with explicit solvation. This inaccuracy is due to the energy fluctuations of the solvent, which cause the sampling method to be less sensitive to the energy fluctuations of the solute. In the present work, the problem of the TIGER2 method is addressed in detail and a modification to the sampling method is introduced to correct this problem. The modified method is called "TIGER2 with solvent energy averaging," or TIGER2A. This new method overcomes the sampling problem with the TIGER2 algorithm and is able to closely approximate Boltzmann-weighted sampling of molecular systems with explicit solvation. The difference in performance between the TIGER2 and TIGER2A methods is demonstrated by comparing them against analytical results for simple one-dimensional models, against replica exchange molecular dynamics (REMD) simulations for sampling the conformation of alanine dipeptide and the folding behavior of (AAQAA)3 peptide in aqueous solution, and by comparing their performance in sampling the behavior of hen egg-white lysozyme in aqueous solution. The new TIGER2A method solves the problem caused by solvent energy fluctuations in TIGER2 while maintaining the two important characteristics of TIGER2, i.e., (1) using multiple replicas sampled at different temperature levels to help systems efficiently escape from local potential energy minima and (2) enabling the number of replicas used for a simulation to be independent of the size of the molecular system, thus providing an accelerated sampling method that can be used to efficiently sample systems considered too large for the application of conventional temperature REMD.


Asunto(s)
Simulación de Dinámica Molecular , Muramidasa/química , Péptidos/química , Temperatura , Algoritmos , Animales , Pollos , Clara de Huevo/química , Muramidasa/metabolismo , Solventes/química
3.
J Phys Chem B ; 112(23): 7095-103, 2008 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-18476731

RESUMEN

Silica dust particles in the form of quartz (but not kaolin) have been hypothesized to promote pulmonary diseases such as silicosis. The hypothesis is that quartz and kaolin have a comparable membranolytic potential on a specific surface area basis, and they have a comparable cytotoxic potential for lavaged pulmonary macrophages. Suppression of the cytotoxic activity occurs when these dust particles are treated with dipalmitoylphosphatidylcholine (DPPC), a common phospholipid component of the lung pulmonary surfactant. However, the enzyme phospholipase A2 is known to digest the phospholipid component more readily in the presence of quartz than kaolin. Since surface silanol (Si-OH) and aluminol (Al-OH) groups may interact differently with the phospholipid, an understanding of the selective removal of phospholipid by PLA2 may explain in vivo differences in cytotoxicity between quartz and kaolin. To develop some insight into this phenomenon, the interaction between a phospholipid and silica particles was examined by performing ab initio DFT calculations on clusters constructed with small (one or two silica tetrahedral units) representative parts of the silicate surface and the phospholipid head group. The clusters consisted of a phospholipid head group or functional groups from the head group complexed with Si(OSiH 3) 3OH, Al(OSiH 3) 3OH (-) or Al(OSiH 3) 3OH 2. Fully optimized geometries of the complexes were used to determine binding energies, -OH vibrational frequency shifts, and NMR chemical shieldings. Results indicate that interaction of the protonated aluminol group (Al-OH 2 (+)) with the phosphate portion of the head group is strongest, while interaction of the -OH 2 (+) group with the trimethyl-choline moiety of the head group is weakest. The presence of the choline moiety increased the magnitude of the -OH vibrational frequency shifts, and the shifts were significantly larger in complexes with protonated aluminol groups relative to silanol complexes. Analysis of ChelpG atomic charges shows that a net transfer of charge occurs from the silica unit to the head group within the complexes.


Asunto(s)
Silicatos de Aluminio/química , Fosfolípidos/química , Cuarzo/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares
4.
J R Soc Interface ; 5(24): 749-58, 2008 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-17956852

RESUMEN

Chronic beryllium disease (CBD) is a granulomatous lung disease that occurs primarily in workers who are exposed to beryllium dust or fumes. Although exposure to beryllium is a necessary factor in the pathobiology of CBD, alleles that code for a glutamic acid residue at the 69th position of the HLA-DPbeta1 gene have previously been found to be associated with CBD. To date, 43 HLA-DPbeta1 alleles that code for glutamic acid 69 (E69) have been described. Whether all of these E69 coding alleles convey equal risk of CBD is unknown. The present study demonstrates that, on the one hand, E69 alleloforms of major histocompatibility complex class II antigen-presenting proteins with the greatest negative surface charge convey the highest risk of CBD, and on the other hand, irrespective of allele, they convey equal risk of beryllium sensitization (BeS). In addition, the data suggest that the same alleles that cause the greatest risk of CBD are also important for the progression from BeS to CBD. Alleles convey the highest risk code for E26 in a constant region and for E69, aspartic acid 55 (D55), E56, D84 and E85 in hypervariable regions of the HLA-DPbeta1 chain. Together with the calculated high binding affinities for beryllium, these results suggest that an adverse immune response, leading to CBD, is triggered by chemically specific metal-protein interactions.


Asunto(s)
Sustitución de Aminoácidos , Beriliosis/metabolismo , Berilio/metabolismo , Antígenos HLA-DR/metabolismo , Modelos Biológicos , Alelos , Beriliosis/genética , Beriliosis/inmunología , Berilio/toxicidad , Enfermedad Crónica , Femenino , Antígenos HLA-DR/genética , Antígenos HLA-DR/inmunología , Cadenas HLA-DRB1 , Humanos , Masculino , Exposición Profesional/efectos adversos , Unión Proteica/genética , Unión Proteica/inmunología , Factores de Riesgo , Propiedades de Superficie
5.
Artículo en Inglés | MEDLINE | ID: mdl-30364605

RESUMEN

The determination of monoclonal antibody interactions with protein antigens in solution can lead to important insights guiding physical characterization and molecular engineering of therapeutic targets. We used small-angle scattering (SAS) combined with size-exclusion multi-angle light scattering high-performance liquid chromatography to obtain monodisperse samples with defined stoichiometry to study an anti-streptavidin monoclonal antibody interacting with tetrameric streptavidin. Ensembles of structures with both monodentate and bidentate antibody-antigen complexes were generated using molecular docking protocols and molecular simulations. By comparing theoretical SAS profiles to the experimental data it was determined that the primary component(s) were compact monodentate and/or bidentate complexes. SAS profiles of extended monodentate complexes were not consistent with the experimental data. These results highlight the capability for determining the shape of monoclonal antibody-antigen complexes in solution using SAS data and physics-based molecular modeling.

6.
J Phys Chem B ; 109(37): 17757-61, 2005 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-16853271

RESUMEN

To gain insight into the interaction of Be2+ ions with negatively charged protein residues, the free energy changes associated with the replacement of water molecules in the first hydration shell of with one and two acetate anions were computed for the gas phase reactions using ab initio methods at the MP2 and DFT-B3LYP computational levels. Both unidentate and bidentate modes of coordination of the carboxylate group with the Be2+ ion are considered. Continuum dielectric calculations were then performed to estimate the corresponding free energy changes in several environments of varying dielectric strength. Environments with dielectric constants of 2 and 4, which represent a protein interior, and 78, which corresponds to water, were used. It is found that the free energy changes for the substitution reactions decrease in magnitude with increasing dielectric strength, in agreement with similar results reported for Mg2+, Ca2+, and Zn2+ (Dudev et al. J. Phys. Chem. B 2000, 104, 3692). However, unlike Mg2+, Ca2+, and Zn2+, the free energy change for single-anion or concerted two-anion substitution reactions with remains negative and indicates the reactions are still favorable in the high dielectric aqueous environment. It is also found that the unidentate mode of binding is favored over the bidentate mode, and this is attributed, in part, to the introduction of hydrogen bonds between one carboxylate oxygen and a water molecule within the cluster when unidentate binding with Be2+ is involved.


Asunto(s)
Berilio/química , Ácidos Carboxílicos/química , Proteínas/química , Acetatos/química , Electroquímica , Entropía , Modelos Moleculares , Unión Proteica , Agua/química
7.
Biointerphases ; 10(2): 021002, 2015 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-25818122

RESUMEN

Interfacial force field (IFF) parameters for use with the CHARMM force field have been developed for interactions between peptides and high-density polyethylene (HDPE). Parameterization of the IFF was performed to achieve agreement between experimental and calculated adsorption free energies of small TGTG-X-GTGT host-guest peptides (T = threonine, G = glycine, and X = variable amino-acid residue) on HDPE, with ±0.5 kcal/mol agreement. This IFF parameter set consists of tuned nonbonded parameters (i.e., partial charges and Lennard-Jones parameters) for use with an in-house-modified CHARMM molecular dynamic program that enables the use of an independent set of force field parameters to control molecular behavior at a solid-liquid interface. The R correlation coefficient between the simulated and experimental peptide adsorption free energies increased from 0.00 for the standard CHARMM force field parameters to 0.88 for the tuned IFF parameters. Subsequent studies are planned to apply the tuned IFF parameter set for the simulation of protein adsorption behavior on an HDPE surface for comparison with experimental values of adsorbed protein orientation and conformation.


Asunto(s)
Adsorción , Péptidos/química , Polietileno/química , Tensión Superficial , Simulación de Dinámica Molecular , Unión Proteica
8.
Environ Health Perspect ; 111(15): 1827-34, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14630515

RESUMEN

The pathobiology of chronic beryllium disease (CBD) involves the major histocompatibility complex class II human leukocyte antigen (HLA). Although occupational exposure to beryllium is the cause of CBD, molecular epidemiologic studies suggest that specific (Italic)HLA-DPB1(/Italic) alleles may be genetic susceptibility factors. We have studied three-dimensional structural models of HLA-DP proteins encoded by these genes. The extracellular domains of HLA-DPA1*0103/B1*1701, *1901, *0201, and *0401, and HLA-DPA1*0201/B1*1701, *1901, *0201, and *0401 were modeled from the X-ray coordinates of an HLA-DR template. Using these models, the electrostatic potential at the molecular surface of each HLA-DP was calculated and compared. These comparisons identify specific characteristics in the vicinity of the antigen-binding pocket that distinguish the different HLA-DP allotypes. Differences in electrostatics originate from the shape, specific disposition, and variation in the negatively charged groups around the pocket. The more negative the pocket potential, the greater the odds of developing CBD estimated from reported epidemiologic studies. Adverse impact is caused by charged substitutions in positions 55, 56, 69, 84, and 85, namely, the exact same loci identified as genetic markers of CBD susceptibility as well as cobalt-lung hard metal disease. These findings suggest that certain substitutions may promote an involuntary cation-binding site within a putatively metal-free peptide-binding pocket and therefore change the innate specificity of antigen recognition.


Asunto(s)
Beriliosis/fisiopatología , Predisposición Genética a la Enfermedad , Antígenos HLA-DP/química , Antígenos HLA-DP/inmunología , Modelos Moleculares , Exposición Profesional , Secuencia de Aminoácidos , Beriliosis/inmunología , Cationes , Enfermedad Crónica , Haplotipos , Humanos , Inmunización , Datos de Secuencia Molecular , Factores de Riesgo , Electricidad Estática
9.
Biointerphases ; 7(1-4): 56, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22941539

RESUMEN

Adsorption free energies for eight host-guest peptides (TGTG-X-GTGT, with X = N, D, G, K, F, T, W, and V) on two different silica surfaces [quartz (100) and silica glass] were calculated using umbrella sampling and replica exchange molecular dynamics and compared with experimental values determined by atomic force microscopy. Using the CHARMM force field, adsorption free energies were found to be overestimated (i.e., too strongly adsorbing) by about 5-9 kcal/mol compared to the experimental data for both types of silica surfaces. Peptide adsorption behavior for the silica glass surface was then adjusted using a modified version of the CHARMM program, which we call dual force-field CHARMM, which allows separate sets of nonbonded parameters (i.e., partial charge and Lennard-Jones parameters) to be used to represent intra-phase and inter-phase interactions within a given molecular system. Using this program, interfacial force field (IFF) parameters for the peptide-silica glass systems were corrected to obtain adsorption free energies within about 0.5 kcal/mol of their respective experimental values, while IFF tuning for the quartz (100) surface remains for future work. The tuned IFF parameter set for silica glass will subsequently be used for simulations of protein adsorption behavior on silica glass with greater confidence in the balance between relative adsorption affinities of amino acid residues and the aqueous solution for the silica glass surface.


Asunto(s)
Simulación por Computador , Vidrio/química , Proteínas/química , Proteínas/metabolismo , Dióxido de Silicio/química , Dióxido de Silicio/metabolismo , Tensión Superficial , Adsorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA