Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Earth Space Chem ; 6(4): 943-952, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35495366

RESUMEN

Nanogeochemistry is an emerging focus area recognizing the role of nanoparticles in Earth systems. Engineered nanotechnology has cultivated advanced analytical techniques that are also applicable to nanogeochemistry. Single particle inductively coupled plasma ICP-time-of-flight-mass spectrometry (ICP-TOF-MS) promises a significant step forward, as time-of-flight mass analyzers enable simultaneous quantification of the entire atomic mass spectrum (∼7-250 m/z +). To demonstrate the utility of this approach, samples were collected and analyzed from a large, boreal river, and its surrounding tributaries. These samples provided us with a diversity of particle compositions and morphologies, while their interconnected nature allowed for an examination of the various nanogeochemical processes present in this system. To further expand on this effort, we combined this high-throughput technique with AF4-ICPMS, focusing on major carriers of trace elements. Using spICP-TOF-MS, Al, Si, and Fe were grouped into classes having all combinations of one or more of these elements. Particle-by-particle ICP-TOF-MS analysis found chemically heterogeneous populations, indicating the predominance of diverse mineralogy or heteroaggregates. The importance of suspended Fe and Mn for the speciation of Pb was observed by single particle ICP-TOF-MS and complemented by AF4-ICPMS analysis of dissolved organic matter and nanoparticulate Fe/Mn. Our study exploits the combination of spICP-TOF-MS and AF4-ICP-MS for studying isotopic and elemental ratios (mineralogy) of individual nanoparticles, which opens the door to further explore the mechanisms of colloid facilitated transport of trace elements.

2.
Environ Manage ; 44(4): 712-31, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19495862

RESUMEN

Planners are being called on to prioritize marine shorelines for conservation status and restoration action. This study documents an approach to determining the management strategy most likely to succeed based on current conditions at local and landscape scales. The conceptual framework based in restoration ecology pairs appropriate restoration strategies with sites based on the likelihood of producing long-term resilience given the condition of ecosystem structures and processes at three scales: the shorezone unit (site), the drift cell reach (nearshore marine landscape), and the watershed (terrestrial landscape). The analysis is structured by a conceptual ecosystem model that identifies anthropogenic impacts on targeted ecosystem functions. A scoring system, weighted by geomorphic class, is applied to available spatial data for indicators of stress and function using geographic information systems. This planning tool augments other approaches to prioritizing restoration, including historical conditions and change analysis and ecosystem valuation.


Asunto(s)
Conservación de los Recursos Naturales , Modelos Teóricos , Humedales , Ecosistema , Contaminantes Ambientales , Sistemas de Información Geográfica , Agua de Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA