Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 298(9): 102326, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35933015

RESUMEN

Atrial fibrillation is the most common sustained cardiac arrhythmia in humans. Current atrial fibrillation antiarrhythmic drugs have limited efficacy and carry the risk of ventricular proarrhythmia. GsMTx4, a mechanosensitive channel-selective inhibitor, has been shown to suppress arrhythmias through the inhibition of stretch-activated channels (SACs) in the heart. The cost of synthesizing this peptide is a major obstacle to clinical use. Here, we studied two types of short peptides derived from GsMTx4 for their effects on a stretch-activated big potassium channel (SAKcaC) from the heart. Type I, a 17-residue peptide (referred to as Pept 01), showed comparable efficacy, whereas type II (i.e., Pept 02), a 10-residue peptide, exerted even more potent inhibitory efficacy on SAKcaC compared with GsMTx4. We identified through mutagenesis important sequences required for peptide functions. In addition, molecular dynamics simulations revealed common structural features with a hydrophobic head followed by a positively charged protrusion that may be involved in peptide channel-lipid interactions. Furthermore, we suggest that these short peptides may inhibit SAKcaC through a specific modification to the mechanogate, as the inhibitory effects for both types of peptides were mostly abolished when tested with a mechano-insensitive channel variant (STREX-del) and a nonmechanosensitive big potassium (mouse Slo1) channel. These findings may offer an opportunity for the development of a new class of drugs in the treatment of cardiac arrhythmia generated by excitatory SACs in the heart.


Asunto(s)
Antiarrítmicos , Péptidos y Proteínas de Señalización Intercelular , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio , Neurotoxinas , Péptidos , Venenos de Araña , Animales , Antiarrítmicos/química , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Fibrilación Atrial/tratamiento farmacológico , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/farmacología , Péptidos y Proteínas de Señalización Intercelular/uso terapéutico , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/antagonistas & inhibidores , Lípidos , Ratones , Neurotoxinas/química , Neurotoxinas/farmacología , Péptidos/química , Péptidos/farmacología , Venenos de Araña/química , Venenos de Araña/farmacología , Venenos de Araña/uso terapéutico
2.
Muscle Nerve ; 64(5): 620-628, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34409627

RESUMEN

INTRODUCTION/AIMS: Lymphatic vessels are responsible for the removal of metabolic waste from body tissues. They also play a crucial role in skeletal muscle functioning thorough their high-energy metabolism. In this study we investigated whether disuse muscle atrophy induced by hindlimb unloading is associated with an alteration in the number of lymphatic vessels and differential expression of lymphangiogenic factors in the soleus muscle. METHODS: Male C57BL/6 mice were subjected to tail suspension (TS) for 2 or 4 weeks to induce soleus muscle atrophy. After TS, lymphatic and blood capillaries in the soleus muscle were visualized and counted by double staining with LYVE-1 and CD31. The protein and mRNA levels of vascular endothelial growth factor (VEGF)-C, VEGF-D, and vascular endothelial growth factor receptor-3 were measured by Western blotting and real-time reverse transcript polymerase chain reaction, respectively. RESULTS: TS for 2 weeks resulted in a significant decrease in the number of blood capillaries compared with controls. However, there was no significant change in the number of lymphatic capillaries. By contrast, TS for 4 weeks resulted in a significant decrease in the number of lymphatic and blood capillaries. We observed a significant decrease in the mRNA levels of VEGF-C and VEGF-D in mice subjected to TS for 4 weeks. DISCUSSION: The decrease of intramuscular lymphatic vessels may a crucial role in the process of muscle atrophy.


Asunto(s)
Suspensión Trasera , Vasos Linfáticos , Animales , Miembro Posterior , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/patología , Atrofia Muscular/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
J Biol Chem ; 294(31): 11892-11909, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31201274

RESUMEN

The cardiac mechanosensitive BK (Slo1) channels are gated by Ca2+, voltage, and membrane stretch. The neuropeptide GsMTx4 is a selective inhibitor of mechanosensitive (MS) channels. It has been reported to suppress stretch-induced cardiac fibrillation in the heart, but the mechanism underlying the specificity and even the targeting channel(s) in the heart remain elusive. Here, we report that GsMTx4 inhibits a stretch-activated BK channel (SAKcaC) in the heart through a modulation specific to mechano-gating. We show that membrane stretching increases while GsMTx4 decreases the open probability (Po) of SAKcaC. These effects were mostly abolished by the deletion of the STREX axis-regulated (STREX) exon located between RCK1 and RCK2 domains in BK channels. Single-channel kinetics analysis revealed that membrane stretch activates SAKcaC by prolonging the open-time duration (τO) and shortening the closed-time constant (τC). In contrast, GsMTx4 reversed the effects of membrane stretch, suggesting that GsMTx4 inhibits SAKcaC activity by interfering with mechano-gating of the channel. Moreover, GsMTx4 exerted stronger efficacy on SAKcaC under membrane-hyperpolarized/resting conditions. Molecular dynamics simulation study revealed that GsMTx4 appeared to have the ability to penetrate deeply within the bilayer, thus generating strong membrane deformation under the hyperpolarizing/resting conditions. Immunostaining results indicate that BK variants containing STREX are also expressed in mouse ventricular cardiomyocytes. Our results provide common mechanisms of peptide actions on MS channels and may give clues to therapeutic suppression of cardiac arrhythmias caused by excitatory currents through MS channels under hyper-mechanical stress in the heart.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Venenos de Araña/metabolismo , Animales , Membrana Celular/metabolismo , Pollos , Embrión no Mamífero/metabolismo , Cinética , Canales de Potasio de Gran Conductancia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Ratones , Simulación de Dinámica Molecular , Miocitos Cardíacos/clasificación , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , Dominios Proteicos
4.
Biochem Biophys Res Commun ; 533(3): 410-416, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-32972749

RESUMEN

Exercise is known to improve skeletal muscle function. The mechanism involves muscle contraction-induced activation of the mTOR pathway, which plays a central role in protein synthesis. However, mTOR activation blocks autophagy, a recycling mechanism with a critical role in cellular maintenance/homeostasis. These two responses to muscle contraction look contradictory to the functional improvement of exercise. Herein, we investigate these paradoxical muscle responses in a series of active-inactive phases in a cultured myotube model receiving electrical stimulation to induce intermittent muscle contraction. Our model shows that (1) contractile activity induces mTOR activation and muscle hypertrophy but blocks autophagy, resulting in the accumulation of damaged proteins, while (2) cessation of muscle contraction rapidly activates autophagy, removing damaged protein, yet a prolonged inactive state results in muscle atrophy. Our findings provide new insights into muscle biology and suggest that not only muscle contraction, but also the subsequent cessation of contraction plays a substantial role for the improvement of skeletal muscle function.


Asunto(s)
Autofagia , Contracción Muscular , Fibras Musculares Esqueléticas/fisiología , Animales , Células Cultivadas , Embrión de Pollo , Estimulación Eléctrica , Fibras Musculares Esqueléticas/citología , Proteínas/análisis , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
5.
Langmuir ; 35(23): 7432-7442, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-30113845

RESUMEN

The bacterial mechanosensitive channel, MscL, is activated by membrane tension, acting as a safety valve to prevent cell lysis against hypotonic challenge. It has been established that its activation threshold decreases with membrane thickness, while the underlying mechanism remains to be solved. We performed all-atom molecular dynamics (MD) simulations for the initial opening process of MscL embedded in four different types of lipid bilayers with different thicknesses: 1,2-dilauroyl- sn-glycero-3-phosphocholine (DLPC)), 1,2-dimyristoyl-glycero-3-phosphorylcholine (DMPC), 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC), and 1,2-distearoyl- sn-glycero-3-phosphocholine (DSPC). In response to membrane stretching, channel opening occurred only in the thinner membranes (DLPC and DMPC) in a thickness-dependent way. We found that the MscL opening was governed by the rate and degree of membrane thinning and that the channel opening was tightly associated with the tilting of transmembrane (TM) helices of MscL toward the membrane plane. Upon membrane stretching, the order parameter of acyl chains of thinner membranes (DLPC and DMPC) became smaller, whereas other thicker membranes (DPPC and DSPC) showed interdigitation with little changes in the order parameter. The decreased order parameter contributed much more to membrane thinning than did interdigitation. We conclude that the membrane-thickness-dependent MscL opening mainly arises from structural changes in MscL to match the altered membrane thickness by stretching.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Activación del Canal Iónico , Canales Iónicos/química , Canales Iónicos/metabolismo , Simulación de Dinámica Molecular , Porosidad , Conformación Proteica
6.
Langmuir ; 35(23): 7443-7451, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-30204447

RESUMEN

Focal adhesions (FAs) and adherens junctions (AJs), which serve as a mechanical interface of cell-matrix and cell-cell interactions, respectively, experience tensile force either originating from the deformation of the surrounding tissues or generated by the actomyosin machinery in the cell. These mechanical inputs cause enlargement of FAs and AJs, while the detailed mechanism for the force-dependent development of FAs and AJs remain unclear. Both FAs and AJs provide sites for tethering of actin filaments and actin polymerization. Here, we develop a cell-free system, in which actin filaments are tethered to glass surfaces, and show that application of tensile force to the tethered filaments in the cell extract induces accumulation of several FA and AJ proteins, associated with further accumulation of actin filaments via de novo actin polymerization. Decline in the tensile force results in a decrease in the amount of the accumulated proteins. These results suggest that the tensile force acting on the tethered actin filaments plays a crucial role in the accumulation of FA and AJ proteins.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Moléculas de Adhesión Celular/metabolismo , Resistencia a la Tracción , Citoesqueleto de Actina/química , Actomiosina/metabolismo , Fenómenos Biomecánicos , Vidrio/química , Células HeLa , Humanos , Propiedades de Superficie , Zixina/metabolismo
7.
Curr Top Membr ; 83: 45-76, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31196610

RESUMEN

Extracellular ATP and other nucleotides are important autocrine/paracrine mediators that stimulate purinergic receptors and regulate diverse processes in the normal lungs. They are also associated with pathogenesis of a number of respiratory diseases and clinical complications including acute respiratory distress syndrome and ventilator induced lung injury. Mechanical forces are major stimuli for cellular ATP release but precise mechanisms responsible for this release are still debated. The present review intends to provide the current state of knowledge of the mechanisms of ATP release in the lung. Putative pathways of the release, including the contribution of cell membrane injury and cell lysis are discussed addressing their strength, weaknesses and missing evidence that requires future study. We also provide an overview of the recent technical advances in studying cellular ATP release in vitro and ex vivo. Special attention is given to new insights into lung ATP release obtained with the real-time luminescence ATP imaging. This includes recent data on stretch-induced mechanosensitive ATP release in a model and primary cells of lung alveoli in vitro as well as inflation-induced ATP release in airspaces and pulmonary blood vessels of lungs, ex vivo.


Asunto(s)
Adenosina Trifosfato/metabolismo , Pulmón/diagnóstico por imagen , Pulmón/metabolismo , Fenómenos Mecánicos , Imagen Óptica , Animales , Fenómenos Biomecánicos , Humanos , Pulmón/citología , Factores de Tiempo
8.
Am J Physiol Cell Physiol ; 314(6): C721-C731, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29513566

RESUMEN

Unloading-mediated muscle atrophy is associated with increased reactive oxygen species (ROS) production. We previously demonstrated that elevated ubiquitin ligase casitas B-lineage lymphoma-b (Cbl-b) resulted in the loss of muscle volume (Nakao R, Hirasaka K, Goto J, Ishidoh K, Yamada C, Ohno A, Okumura Y, Nonaka I, Yasutomo K, Baldwin KM, Kominami E, Higashibata A, Nagano K, Tanaka K, Yasui N, Mills EM, Takeda S, Nikawa T. Mol Cell Biol 29: 4798-4811, 2009). However, the pathological role of ROS production associated with unloading-mediated muscle atrophy still remains unknown. Here, we showed that the ROS-mediated signal transduction caused by microgravity or its simulation contributes to Cbl-b expression. In L6 myotubes, the assessment of redox status revealed that oxidized glutathione was increased under microgravity conditions, and simulated microgravity caused a burst of ROS, implicating ROS as a critical upstream mediator linking to downstream atrophic signaling. ROS generation activated the ERK1/2 early-growth response protein (Egr)1/2-Cbl-b signaling pathway, an established contributing pathway to muscle volume loss. Interestingly, antioxidant treatments such as N-acetylcysteine and TEMPOL, but not catalase, blocked the clinorotation-mediated activation of ERK1/2. The increased ROS induced transcriptional activity of Egr1 and/or Egr2 to stimulate Cbl-b expression through the ERK1/2 pathway in L6 myoblasts, since treatment with Egr1/2 siRNA and an ERK1/2 inhibitor significantly suppressed clinorotation-induced Cbl-b and Egr expression, respectively. Promoter and gel mobility shift assays revealed that Cbl-b was upregulated via an Egr consensus oxidative responsive element at -110 to -60 bp of the Cbl-b promoter. Together, this indicates that under microgravity conditions, elevated ROS may be a crucial mechanotransducer in skeletal muscle cells, regulating muscle mass through Cbl-b expression activated by the ERK-Egr signaling pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Atrofia Muscular/enzimología , Mioblastos Esqueléticos/enzimología , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ingravidez , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Antioxidantes/farmacología , Células COS , Chlorocebus aethiops , Factores de Transcripción de la Respuesta de Crecimiento Precoz/genética , Factores de Transcripción de la Respuesta de Crecimiento Precoz/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glutatión/metabolismo , Mecanotransducción Celular , Atrofia Muscular/genética , Atrofia Muscular/patología , Atrofia Muscular/prevención & control , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/patología , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-cbl/genética , Ratas , Vuelo Espacial , Factores de Tiempo , Regulación hacia Arriba , Simulación de Ingravidez
9.
J Neurochem ; 145(1): 19-33, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29222951

RESUMEN

Neuronal intrinsic homeostatic scaling-down of excitatory synapse has been implicated in epilepsy pathogenesis to prevent the neuronal circuits from hyperexcitability. Recent findings suggest a role for neuronal PAS domain protein 4 (Npas4), an activity-dependent neuron-specific transcription factor in epileptogenesis, however, the underlying mechanism by which Npas4 regulates epilepsy remains unclear. We herein propose that limbic seizure activity up-regulates Npas4-homer1a signaling in the hippocampus, thereby contributing to epileptogenesis in mice. The expression level of Npas4mRNA was significantly increased after the pentylenetetrazol (PTZ) treatment. Npas4KO mice developed kindling more rapidly than their wild-type littermates. The expression of Homer1a in the hippocampus increased after seizure activity. Npas4 increased Homer1a promoter activity in COS7 cells. The PTZ-stimulated induction of Homer1a was attenuated in the hippocampus of Npas4KO mice. The combination of fluorescence in situ hybridization and immunohistochemical analyses revealed that Homer1amRNA co-localized with the Npas4 protein after the convulsive seizure response. PTZ reduced excitatory synaptic transmission at the associational/commissural fibers-CA3 synapses through the Npas4-mediated down-regulation of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in hippocampal CA3 neurons. The adeno-associated virus (AAV)-mediated expression of Homer1a resulted in lower α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor GluA1 subunit levels in the hippocampal plasma membrane fraction than in that from AAV-EGFP-transfected Npas4KO mice. The development of kindling was more strongly suppressed in AAV-Homer1a-microinjected Npas4KO mice than in AAV-EGFP-microinjected Npas4KO mice. These results indicate that Npas4 functions as a molecular switch to initiate homeostatic scaling and the targeting of Npas4-Homer1a signaling may provide new approaches for the treatment of epilepsy.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Epilepsia/metabolismo , Proteínas de Andamiaje Homer/metabolismo , Neuronas/metabolismo , Animales , Convulsivantes/toxicidad , Epilepsia/inducido químicamente , Homeostasis/fisiología , Excitación Neurológica , Masculino , Ratones , Ratones Endogámicos C57BL , Pentilenotetrazol/toxicidad , Regulación hacia Arriba
10.
J Cell Sci ; 129(19): 3574-3582, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27528401

RESUMEN

MEKK1 (also known as MAP3K1), which plays a major role in MAPK signaling, has been implicated in mechanical processes in cells, such as migration. Here, we identify the actin-binding protein calponin-3 as a new MEKK1 substrate in the signaling that regulates actomyosin-based cellular contractility. MEKK1 colocalizes with calponin-3 at the actin cytoskeleton and phosphorylates it, leading to an increase in the cell-generated traction stress. MEKK1-mediated calponin-3 phosphorylation is attenuated by the inhibition of myosin II activity, the disruption of actin cytoskeletal integrity and adhesion to soft extracellular substrates, whereas it is enhanced upon cell stretching. Our results reveal the importance of the MEKK1-calponin-3 signaling pathway to cell contractility.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo , Proteínas de Microfilamentos/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Fenómenos Biomecánicos , Células HEK293 , Humanos , Ratones , Miosina Tipo II/metabolismo , Células 3T3 NIH , Fosforilación , Fosfotreonina/metabolismo , Estrés Fisiológico , Calponinas
11.
Biochem Biophys Res Commun ; 506(4): 983-989, 2018 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-30404732

RESUMEN

Cell proliferation is regulated not only by soluble chemical factors but also by mechanical cues surrounding cells. Mechanical stretch of extracellular substrates is known to promote cell proliferation by driving exit from the G0 phase and entry into the S phase. Here, we report that planer compression of extracellular substrates induces cell cycle arrest in the S phase. The compression-induced S phase arrest is mediated by the checkpoint kinase 2 (CHK2)-p53 pathway. In contrast to the canonical S phase checkpoint pathway activated by DNA damage, CHK2 activation by the substrate compression is independent of ataxia telangiectasia mutated (ATM). We further find that disassembly of the actin cytoskeleton is required for the compression-induced S phase arrest. Notably, cancer cells do not exhibit S phase arrest upon the substrate compression. Our results suggest a novel mechanism for homeostatic control of cell growth under mechanical perturbations.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Puntos de Control del Ciclo Celular , Quinasa de Punto de Control 2/metabolismo , Fuerza Compresiva , Espacio Extracelular/metabolismo , Fase S , Actinas/metabolismo , Animales , Línea Celular Tumoral , Daño del ADN , Activación Enzimática , Células HEK293 , Humanos , Ratas , Proteína p53 Supresora de Tumor/metabolismo
12.
Glia ; 65(9): 1491-1503, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28581152

RESUMEN

Neurosteroid dehydroepiandrosterone (DHEA) has been reported to exert a potent neuroprotective effect against glutamate-induced excitotoxicity. However, the underlying mechanism remains to be elucidated. One of the possible mechanisms may be an involvement of astrocytic glutamate transporter subtype-1 (GLT-1) that can quickly clear spilled glutamate at the synapse to prevent excitotoxicity. To examine the effect of DHEA on GLT-1 activity, we measured synaptically induced glial depolarization (SIGD) in the dentate gyrus (DG) of adult rats by applying an optical recording technique to the hippocampal slices stained with voltage-sensitive dye RH155. Bath-application of DHEA for 10 min dose-dependently increased SIGD without changing presynaptic glutamate releases, which was sensitive to the GLT-1 blocker DHK. Patch-clamp recordings in astrocytes showed that an application of 50 µM DHEA increased glutamate-evoked inward currents (Iglu) by approximately 1.5-fold, which was dependent on the GLT-1 activity. In addition, the level of biotinylated GLT-1 protein in the surface of astrocytes was significantly elevated by DHEA. The DHEA-increased SIGD, Iglu, and GLT-1 translocation to the cell surface were blocked by the σ1 R antagonist NE100 and mimicked by the σ1 R agonist PRE084. DHEA elevated the phosphorylation level of PKC in a σ1 R-dependent manner. Furthermore, the PKC inhibitor chelerythrine could prevent the DHEA-increased SIGD, Iglu, and GLT-1 translocation. Collectively, present results suggest that DHEA enhances the activity and translocation to cell surface of astrocytic GLT-1 mainly via σ1 R-mediated PKC cascade.


Asunto(s)
Astrocitos/metabolismo , Deshidroepiandrosterona/metabolismo , Giro Dentado/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Proteína Quinasa C/metabolismo , Receptores sigma/metabolismo , Animales , Astrocitos/efectos de los fármacos , Fármacos del Sistema Nervioso Central/administración & dosificación , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Deshidroepiandrosterona/administración & dosificación , Giro Dentado/efectos de los fármacos , Ácido Glutámico/efectos de los fármacos , Ácido Glutámico/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Proteína Quinasa C/antagonistas & inhibidores , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Wistar , Receptores sigma/agonistas , Receptores sigma/antagonistas & inhibidores , Técnicas de Cultivo de Tejidos
13.
Muscle Nerve ; 55(2): 243-253, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27301985

RESUMEN

INTRODUCTION: Resistance training promotes recovery from muscle atrophy, but optimum training programs have not been established. We aimed to determine the optimum training intensity for muscle atrophy. METHODS: Mice recovering from atrophied muscles after 2 weeks of tail suspension underwent repeated isometric training with varying joint torques 50 times per day. RESULTS: Muscle recovery assessed by maximal isometric contraction and myofiber cross-sectional areas (CSAs) were facilitated at 40% and 60% maximum contraction strength (MC), but at not at 10% and 90% MC. At 60% and 90% MC, damaged and contained smaller diameter fibers were observed. Activation of myogenic satellite cells and a marked increase in myonuclei were observed at 40%, 60%, and 90% MC. CONCLUSIONS: The increases in myofiber CSAs were likely caused by increased myonuclei formed through fusion of resistance-induced myofibers with myogenic satellite cells. These data indicate that resistance training without muscle damage facilitates efficient recovery from atrophy. Muscle Nerve 55: 243-253, 2017.


Asunto(s)
Músculo Esquelético/fisiología , Atrofia Muscular/rehabilitación , Recuperación de la Función/fisiología , Entrenamiento de Fuerza/métodos , Análisis de Varianza , Estimulación Eléctrica , Femenino , Suspensión Trasera , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Contracción Isométrica , Masculino , Atrofia Muscular/fisiopatología , Proteína MioD/metabolismo , Miogenina/metabolismo , Factor de Transcripción PAX7/metabolismo
14.
EMBO Rep ; 16(2): 250-7, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25550404

RESUMEN

Tensile forces generated by stress fibers drive signal transduction events at focal adhesions. Here, we report that stress fibers per se act as a platform for tension-induced activation of biochemical signals. The MAP kinase, ERK is activated on stress fibers in a myosin II-dependent manner. In myosin II-inhibited cells, uniaxial stretching of cell adhesion substrates restores ERK activation on stress fibers. By quantifying myosin II- or mechanical stretch-mediated tensile forces in individual stress fibers, we show that ERK activation on stress fibers correlates positively with tensile forces acting on the fibers, indicating stress fibers as a tension sensor in ERK activation. Myosin II-dependent ERK activation is also observed on actomyosin bundles connecting E-cadherin clusters, thus suggesting that actomyosin bundles, in general, work as a platform for tension-dependent ERK activation.


Asunto(s)
Actomiosina/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibras de Estrés/metabolismo , Animales , Línea Celular , Adhesiones Focales/metabolismo , Humanos , Mecanotransducción Celular/fisiología , Ratones , Miosina Tipo II/metabolismo , Células 3T3 NIH , Resistencia a la Tracción/fisiología
15.
Proc Natl Acad Sci U S A ; 111(27): 9810-5, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24958883

RESUMEN

The actin filament-severing protein actin depolymerizing factor (ADF)/cofilin is ubiquitously distributed among eukaryotes and modulates actin dynamics. The cooperative binding of cofilin to actin filaments is crucial for the concentration-dependent unconventional modulation of actin dynamics by cofilin. In this study, the kinetic parameters associated with the cooperative binding of cofilin to actin filaments were directly evaluated using a single-molecule imaging technique. The on-rate of cofilin binding to the actin filament was estimated to be 0.06 µM(-1)⋅s(-1) when the cofilin concentration was in the range of 30 nM to 1 µM. A dwell time histogram of cofilin bindings decays exponentially to give an off-rate of 0.6 s(-1). During long-term cofilin binding events (>0.4 s), additional cofilin bindings were observed in the vicinity of the initial binding site. The on-rate for these events was 2.3-fold higher than that for noncontiguous bindings. Super-high-resolution image analysis of the cofilin binding location showed that the on-rate enhancement occurred within 65 nm of the original binding event. By contrast, the cofilin off-rate was not affected by the presence of prebound cofilin. Neither decreasing the temperature nor increasing the viscosity of the test solution altered the on-rates, off-rates, or the cooperative parameter (ω) of the binding. These results indicate that cofilin binding enhances additional cofilin binding in the vicinity of the initial binding site (ca. 24 subunits), but it does not affect the off-rate, which could be the molecular mechanism of the cooperative binding of cofilin to actin filaments.


Asunto(s)
Cofilina 1/metabolismo , Cofilina 2/metabolismo , Destrina/metabolismo , Actinas/metabolismo , Cinética , Unión Proteica , Temperatura , Viscosidad
16.
Am J Physiol Lung Cell Mol Physiol ; 311(5): L956-L969, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27638905

RESUMEN

Extracellular ATP and other nucleotides are important autocrine/paracrine mediators that regulate diverse processes critical for lung function, including mucociliary clearance, surfactant secretion, and local blood flow. Cellular ATP release is mechanosensitive; however, the impact of physical stimuli on ATP release during breathing has never been tested in intact lungs in real time and remains elusive. In this pilot study, we investigated inflation-induced ATP release in rat lungs ex vivo by real-time luciferin-luciferase (LL) bioluminescence imaging coupled with simultaneous infrared tissue imaging to identify ATP-releasing sites. With LL solution introduced into air spaces, brief inflation of such edematous lung (1 s, ∼20 cmH2O) induced transient (<30 s) ATP release in a limited number of air-inflated alveolar sacs during their recruitment/opening. Released ATP reached concentrations of ∼10-6 M, relevant for autocrine/paracrine signaling, but it remained spatially restricted to single alveolar sacs or their clusters. ATP release was stimulus dependent: prolonged (100 s) inflation evoked long-lasting ATP release that terminated upon alveoli deflation/derecruitment while cyclic inflation/suction produced cyclic ATP release. With LL introduced into blood vessels, inflation induced transient ATP release in many small patchlike areas the size of alveolar sacs. Findings suggest that inflation induces ATP release in both alveoli and the surrounding blood capillary network; the functional units of ATP release presumably consist of alveolar sacs or their clusters. Our study demonstrates the feasibility of real-time ATP release imaging in ex vivo lungs and provides the first direct evidence of inflation-induced ATP release in lung air spaces and in pulmonary blood capillaries, highlighting the importance of purinergic signaling in lung function.


Asunto(s)
Adenosina Trifosfato/metabolismo , Sistemas de Computación , Imagenología Tridimensional , Pulmón/metabolismo , Presión , Animales , Capilares/metabolismo , Indicadores y Reactivos , Pulmón/irrigación sanguínea , Masculino , Alveolos Pulmonares/metabolismo , Edema Pulmonar/metabolismo , Edema Pulmonar/patología , Ratas Wistar
17.
J Cell Sci ; 127(Pt 19): 4159-71, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25097230

RESUMEN

Cutaneous wound healing is accelerated by exogenous mechanical forces and is impaired in TRPC6-knockout mice. Therefore, we designed experiments to determine how mechanical force and TRPC6 channels contribute to wound healing using HaCaT keratinocytes. HaCaT cells were pretreated with hyperforin, a major component of a traditional herbal medicine for wound healing and also a TRPC6 activator, and cultured in an elastic chamber. At 3 h after scratching the confluent cell layer, the ATP release and intracellular Ca(2+) increases in response to stretching (20%) were live-imaged. ATP release was observed only in cells at the frontier facing the scar. The diffusion of released ATP caused intercellular Ca(2+) waves that propagated towards the rear cells in a P2Y-receptor-dependent manner. The Ca(2+) response and wound healing were inhibited by ATP diphosphohydrolase apyrase, the P2Y antagonist suramin, the hemichannel blocker CBX and the TRPC6 inhibitor diC8-PIP2. Finally, the hemichannel-permeable dye calcein was taken up only by ATP-releasing cells. These results suggest that stretch-accelerated wound closure is due to the ATP release through mechanosensitive hemichannels from the foremost cells and the subsequent Ca(2+) waves mediated by P2Y and TRPC6 activation.


Asunto(s)
Adenosina Trifosfato/metabolismo , Señalización del Calcio , Calcio/metabolismo , Queratinocitos/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Células Cultivadas , Inmunohistoquímica , Ratones , Transducción de Señal , Canales Catiónicos TRPC/genética , Canal Catiónico TRPC6
18.
FASEB J ; 29(10): 4334-45, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26116700

RESUMEN

The bacterial mechanosensitive channel of small conductance (MscS) plays a crucial role in the protection of bacterial cells against hypo-osmotic shock. The functional characteristics of MscS have been extensively studied using liposomal reconstitution. This is a widely used experimental paradigm and is particularly important for mechanosensitive channels as channel activity can be probed free from cytoskeletal influence. A perpetual issue encountered using this paradigm is unknown channel orientation. Here we examine the orientation of MscS in liposomes formed using 2 ion channel reconstitution methods employing the powerful combination of patch clamp electrophysiology, confocal microscopy, and continuum mechanics simulation. Using the previously determined electrophysiological and pharmacological properties of MscS, we were able to determine that in liposomes, independent of lipid composition, MscS adopts the same orientation seen in native membranes. These results strongly support the idea that these specific methods result in uniform incorporation of membrane ion channels and caution against making assumptions about mechanosensitive channel orientation using the stimulus type alone.


Asunto(s)
Proteínas de Escherichia coli/fisiología , Activación del Canal Iónico/fisiología , Canales Iónicos/fisiología , Mecanotransducción Celular/fisiología , Escherichia coli/metabolismo , Escherichia coli/fisiología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Canales Iónicos/química , Canales Iónicos/metabolismo , Cinética , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Liposomas/química , Liposomas/metabolismo , Mecanotransducción Celular/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Microscopía Confocal , Técnicas de Placa-Clamp , Esferoplastos/efectos de los fármacos , Esferoplastos/metabolismo , Esferoplastos/fisiología , Factores de Tiempo , Trifluoroetanol/farmacología
19.
Subcell Biochem ; 72: 613-26, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26174401

RESUMEN

Since the first discovery of mechanosensitive ion channel (MSC) in non-sensory cells in 1984, a variety of MSCs has been identified both in prokaryotic and eukaryotic cells. One of the central issues concerning MSCs is to understand the molecular and biophysical mechanisms of how mechanical forces activate/open MSCs. It has been well established that prokaryotic (mostly bacterial) MSCs are activated exclusively by membrane tension. Thus the problem to be solved with prokaryotic MSCs is the mechanisms how the MSC proteins receive tensile forces from the lipid bilayer and utilize them for channel opening. On the other hand, the activation of many eukaryotic MSCs crucially depends on tension in the actin cytoskeleton. By using the actin cytoskeleton as a force sensing antenna, eukaryotic MSCs have obtained sophisticated functions such as remote force sensing and force-direction sensing, which bacterial MSCs do not have. Actin cytoskeletons also give eukaryotic MSCs an interesting and important function called "active touch sensing", by which cells can sense rigidity of their substrates. The contractile actin cytoskeleton stress fiber (SF) anchors its each end to a focal adhesion (FA) and pulls the substrate to generate substrate-rigidity-dependent stresses in the FA. It has been found that those stresses are sensed by some Ca2+-permeable MSCs existing in the vicinity of FAs, thus the MSCs work as a substrate rigidity sensor that can transduce the rigidity into intracellular Ca2+ levels. This short review, roughly constituting of two parts, deals with molecular and biophysical mechanisms underlying the MSC activation process mostly based on our recent studies; (1) structure-function in bacterial MSCs activation at the atomic level, and (2) roles of actin cytoskeletons in the activation of eukaryotic MSCs.


Asunto(s)
Bacterias/metabolismo , Células Eucariotas/metabolismo , Canales Iónicos/metabolismo
20.
Clin Calcium ; 26(12): 1659-1669, 2016.
Artículo en Japonés | MEDLINE | ID: mdl-27885176

RESUMEN

In the last decade a new scientific discipline called "Mechanobiology" has emerged. It aims at elucidation of roles and mechanisms of mechanical forces in organisms as well as applications of the obtained fruits to human beings. Mechanobiology deals with a wide variety of objectives, including molecules, cells, tissues, organs and individuals, in which "Cell Mechanosesing" forms the core concept. Starting with a definition of cell mechanosensing, this short review gives an outline of the history of mechanobiology and perspectives on the mechanobiology in the near future.


Asunto(s)
Fenómenos Biomecánicos , Animales , Calcio/metabolismo , Humanos , Canales Iónicos/química , Canales Iónicos/metabolismo , Transducción de Señal , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA