Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Exp Biol ; 226(15)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37470191

RESUMEN

Coastal environments commonly experience fluctuations in salinity and hypoxia-reoxygenation (H/R) stress that can negatively affect mitochondrial functions of marine organisms. Although intertidal bivalves are adapted to these conditions, the mechanisms that sustain mitochondrial integrity and function are not well understood. We determined the rates of respiration and reactive oxygen species (ROS) efflux in the mitochondria of oysters, Crassostrea gigas, acclimated to high (33 psu) or low (15 psu) salinity, and exposed to either normoxic conditions (control; 21% O2) or short-term hypoxia (24 h at <0.01% O2) and subsequent reoxygenation (1.5 h at 21% O2). Further, we exposed isolated mitochondria to anoxia in vitro to assess their ability to recover from acute (∼10 min) oxygen deficiency (<0.01% O2). Our results showed that mitochondria of oysters acclimated to high or low salinity did not show severe damage and dysfunction during H/R stress, consistent with the hypoxia tolerance of C. gigas. However, acclimation to low salinity led to improved mitochondrial performance and plasticity, indicating that 15 psu might be closer to the metabolic optimum of C. gigas than 33 psu. Thus, acclimation to low salinity increased mitochondrial oxidative phosphorylation rate and coupling efficiency and stimulated mitochondrial respiration after acute H/R stress. However, elevated ROS efflux in the mitochondria of low-salinity-acclimated oysters after acute H/R stress indicates a possible trade-off of higher respiration. The high plasticity and stress tolerance of C. gigas mitochondria may contribute to the success of this invasive species and facilitate its further expansion into brackish regions such as the Baltic Sea.


Asunto(s)
Crassostrea , Animales , Especies Reactivas de Oxígeno/metabolismo , Crassostrea/metabolismo , Salinidad , Mitocondrias/metabolismo , Hipoxia
2.
J Exp Biol ; 225(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34904172

RESUMEN

Hypoxia is a major stressor for aquatic organisms, yet intertidal organisms such as the oyster Crassostrea gigas are adapted to frequent oxygen fluctuations by metabolically adjusting to shifts in oxygen and substrate availability during hypoxia-reoxygenation (H/R). We investigated the effects of acute H/R stress (15 min at ∼0% O2 and 10 min reoxygenation) on isolated mitochondria from the gill and the digestive gland of C. gigas respiring on different substrates (pyruvate, glutamate, succinate, palmitate and their mixtures). Gill mitochondria showed better capacity for amino acid and fatty acid oxidation compared with mitochondria from the digestive gland. Mitochondrial responses to H/R stress strongly depended on the substrate and the activity state of mitochondria. In mitochondria oxidizing NADH-linked substrates, exposure to H/R stress suppressed oxygen consumption and generation of reactive oxygen species (ROS) in the resting state, whereas in the ADP-stimulated state, ROS production increased despite little change in respiration. As a result, electron leak (measured as H2O2 to O2 ratio) increased after H/R stress in the ADP-stimulated mitochondria with NADH-linked substrates. In contrast, H/R exposure stimulated succinate-driven respiration without an increase in electron leak. Reverse electron transport (RET) did not significantly contribute to succinate-driven ROS production in oyster mitochondria except for a slight increase in the OXPHOS state during post-hypoxic recovery. A decrease in NADH-driven respiration and ROS production, enhanced capacity for succinate oxidation and resistance to RET might assist in post-hypoxic recovery of oysters mitigating oxidative stress and supporting rapid ATP re-synthesis during oxygen fluctuations, as is commonly observed in estuaries and intertidal zones.


Asunto(s)
Crassostrea , Animales , Crassostrea/metabolismo , Peróxido de Hidrógeno/metabolismo , Hipoxia/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
J Exp Biol ; 224(Pt 4)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33436367

RESUMEN

Estuarine and coastal benthic organisms often experience fluctuations in oxygen levels that can negatively impact their mitochondrial function and aerobic metabolism. To study these impacts, we exposed a common sediment-dwelling bivalve, the soft-shell clam Mya arenaria, for 21 days to chronic hypoxia (PO2  âˆ¼4.1 kPa), cyclic hypoxia (PO2  âˆ¼12.7-1.9 kPa, mean 5.7 kPa) or normoxia (PO2  âˆ¼21.1 kPa). pH was manipulated to mimic the covariation in CO2/pH and oxygen levels in coastal hypoxic zones. Mitochondrial respiration, including proton leak, the capacity for oxidative phosphorylation (OXPHOS), the maximum activity of the electron transport system (ETS), reactive oxygen species (ROS) production, and activity and oxygen affinity of cytochrome c oxidase (CCO) were assessed. Acclimation to constant hypoxia did not affect the studied mitochondrial traits except for a modest decrease in the OXPHOS coupling efficiency. Cyclic hypoxia had no effect on OXPHOS or ETS capacity, but increased proton leak and lowered mitochondrial OXPHOS coupling efficiency. Furthermore, mitochondria of clams acclimated to cyclic hypoxia had higher rates of ROS generation compared with the clams acclimated to normoxia or chronic hypoxia. CCO activity was upregulated under cyclic hypoxia, but oxygen affinity of CCO did not change. These findings indicate that long-term cyclic hypoxia has a stronger impact on the mitochondria of M. arenaria than chronic hypoxia and might lead to impaired ATP synthesis, higher costs of mitochondrial maintenance and oxidative stress. These changes might negatively affect populations of M. arenaria in the coastal Baltic Sea under increasing hypoxia pressure.


Asunto(s)
Mya , Animales , Metabolismo Energético , Mitocondrias/metabolismo , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo
4.
J Exp Biol ; 224(21)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34697625

RESUMEN

Oxygen fluctuations are common in marine waters, and hypoxia-reoxygenation (H-R) stress can negatively affect mitochondrial metabolism. The long-lived ocean quahog, Arctica islandica, is known for its hypoxia tolerance associated with metabolic rate depression, yet the mechanisms that sustain mitochondrial function during oxygen fluctuations are not well understood. We used top-down metabolic control analysis (MCA) to determine aerobic capacity and control over oxygen flux in the mitochondria of quahogs exposed to short-term hypoxia (24 h <0.01% O2) and subsequent reoxygenation (1.5 h 21% O2) compared with normoxic control animals (21% O2). We demonstrated that flux capacity of the substrate oxidation and proton leak subsystems were not affected by hypoxia, while the capacity of the phosphorylation subsystem was enhanced during hypoxia associated with a depolarization of the mitochondrial membrane. Reoxygenation decreased the oxygen flux capacity of all three mitochondrial subsystems. Control over oxidative phosphorylation (OXPHOS) respiration was mostly exerted by substrate oxidation regardless of H-R stress, whereas control by the proton leak subsystem of LEAK respiration increased during hypoxia and returned to normoxic levels during reoxygenation. During hypoxia, reactive oxygen species (ROS) efflux was elevated in the LEAK state, whereas it was suppressed in the OXPHOS state. Mitochondrial ROS efflux returned to normoxic control levels during reoxygenation. Thus, mitochondria of A. islandica appear robust to hypoxia by maintaining stable substrate oxidation and upregulating phosphorylation capacity, but remain sensitive to reoxygenation. This mitochondrial phenotype might reflect adaptation of A. islandica to environments with unpredictable oxygen fluctuations and its behavioural preference for low oxygen levels.


Asunto(s)
Mercenaria , Animales , Hipoxia , Mitocondrias , Océanos y Mares , Especies Reactivas de Oxígeno
5.
J Exp Biol ; 223(Pt 13)2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32527963

RESUMEN

Allometric decline of mass-specific metabolic rate with increasing body size in organisms is a well-documented phenomenon. Despite a long history of research, the mechanistic causes of metabolic scaling with body size remain under debate. Some hypotheses suggest that intrinsic factors such as allometry of cellular and mitochondrial metabolism may contribute to the organismal-level metabolic scaling. The aim of our present study was to determine the metabolic allometry at the mitochondrial level using a continually growing marine ectotherm, the mussel Mytilus edulis, as a model. Mussels from a single cohort that considerably differed in body size were selected, implying faster growth in the larger specimens. We determined the body mass-dependent scaling of the mitochondrial proton leak respiration, respiration in the presence of ADP indicative of the oxidative phosphorylation (OXPHOS), and maximum activity of the mitochondrial electron transport system (ETS) and cytochrome c oxidase (COX). Respiration was measured at normal (15°C), and elevated (27°C) temperatures. The results demonstrated a pronounced allometric increase in both proton leak respiration and OXPHOS activity of mussel mitochondria. Mussels with faster growth (larger body size) showed an increase in OXPHOS rate, proton leak respiration rate, and ETS and COX activity (indicating an overall improved mitochondrial performance) and higher respiratory control ratio (indicating better mitochondrial coupling and potentially lower costs of mitochondrial maintenance at the same OXPHOS capacity) compared with slower growing (smaller) individuals. Our data show that the metabolic allometry at the organismal level cannot be directly explained by mitochondrial functioning.


Asunto(s)
Mytilus edulis , Animales , Tamaño Corporal , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Mitocondrias/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno
6.
Artículo en Inglés | MEDLINE | ID: mdl-30445227

RESUMEN

Bioturbators such as sediment-dwelling marine bivalves are ecosystem engineers that enhance sediment-water exchange and benthic-pelagic coupling. In shallow coastal areas, bivalves are exposed to frequent disturbance and salinity stress that might negatively affect their activity and physiological performance; however, the mechanisms underlying these effects are not fully understood. We investigated the effects of osmotic stress (low and fluctuating salinity) and repeated burrowing on aerobic and contractile capacity of the foot muscle (assessed by the activity of succinate dehydrogenase and myosin ATPase) as well as the levels of organic osmolytes (free amino acids) and biochemical markers of protein synthesis and proteolysis in key osmoregulatory and energy storing tissues (gills and hepatopancreas, respectively) in a common bioturbator, the soft shell clam Mya arenaria. Osmotic stress and exhaustive exercise altered the foot muscle capacity of soft shell clams and had a strong impact on protein and amino acid homeostasis in tissues not directly involved in locomotion. Acclimation to constant low salinity (5 practical salinity units) depleted the whole-body free amino acid pool and affected protein synthesis but not protein breakdown in the gill. In contrast, fluctuating (5-15) salinity increased protein breakdown rate, suppressed protein synthesis, caused oxidative damage to proteins in the gill and selectively depleted whole-body glycine pool. Clams acclimated to normal salinity (15) increased the aerobic capacity of the foot muscle upon repeated burrowing, whereas acclimation to low and fluctuating salinity reduced this adaptive muscle plasticity. Under the normal and low salinity conditions, exhaustive exercise induced protein conservation pathways (indicated by suppression of protein synthesis and catabolism), but this effect was disrupted by fluctuating salinity. These findings indicate that exhaustive exercise and osmotic stress interactively affect whole-body protein homeostasis and functional capacity of the foot muscle in soft shell clams which might contribute to reduced burrowing activity of bivalve bioturbators in osmotically challenging environments such as estuaries and shallow coastal zones.


Asunto(s)
Bivalvos/fisiología , Músculos/fisiología , Presión Osmótica , Proteínas/metabolismo , Aminoácidos/metabolismo , Animales , Bivalvos/metabolismo , Branquias/metabolismo , Músculos/metabolismo , Salinidad
7.
J Exp Biol ; 221(Pt 4)2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29361598

RESUMEN

Bioturbation of sediments by burrowing organisms plays a key role in the functioning of coastal ecosystems. Burrowing is considered an energetically expensive activity, yet the energy costs of burrowing and the potential impacts of multiple stressors (such as salinity stress and wave action) on bioenergetics and burrowing performance of marine bioturbators are not well understood. We investigated the effects of mechanical disturbance and salinity stress on the burrowing behavior, aerobic capacity and energy expense of digging in a common marine bioturbator, the soft-shell clam Mya arenaria from the Baltic Sea (control salinity 15). Mya arenaria showed large individual variability in the burrowing efficiency, with an average of ∼7% of the body energy reserves used per burial. Clams with higher mitochondrial capacity and lower energy expenditure per burial showed higher endurance. Acclimation for 3-4 weeks to low (5) or fluctuating (5-15) salinity reduced the burrowing speed and the number of times the clams can rebury but did not affect the mitochondrial capacity of the whole body or the gill. Acclimation to the fluctuating salinity shifted the predominant fuel use for burrowing from proteins to lipids. Our data indicate that the reduced burrowing performance of clams under the salinity stress is not due to the limitations of energy availability or aerobic capacity but must involve other mechanisms (such as impaired muscle performance). The reduction in the burrowing capacity of clams due to salinity stress may have important implications for survival, activity and ecological functions of the clams in shallow coastal ecosystems.


Asunto(s)
Metabolismo Energético , Mya/fisiología , Estrés Salino , Animales , Fenómenos Biomecánicos , Locomoción , Distribución Aleatoria
8.
J Exp Biol ; 219(Pt 11): 1659-74, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27252455

RESUMEN

Fluctuations in oxygen (O2) concentrations represent a major challenge to aerobic organisms and can be extremely damaging to their mitochondria. Marine intertidal molluscs are well-adapted to frequent O2 fluctuations, yet it remains unknown how their mitochondrial functions are regulated to sustain energy metabolism and prevent cellular damage during hypoxia and reoxygenation (H/R). We used metabolic control analysis to investigate the mechanisms of mitochondrial responses to H/R stress (18 h at <0.1% O2 followed by 1 h of reoxygenation) using hypoxia-tolerant intertidal clams Mercenaria mercenaria and hypoxia-sensitive subtidal scallops Argopecten irradians as models. We also assessed H/R-induced changes in cellular energy balance, oxidative damage and unfolded protein response to determine the potential links between mitochondrial dysfunction and cellular injury. Mitochondrial responses to H/R in scallops strongly resembled those in other hypoxia-sensitive organisms. Exposure to hypoxia followed by reoxygenation led to a strong decrease in the substrate oxidation (SOX) and phosphorylation (PHOS) capacities as well as partial depolarization of mitochondria of scallops. Elevated mRNA expression of a reactive oxygen species-sensitive enzyme aconitase and Lon protease (responsible for degradation of oxidized mitochondrial proteins) during H/R stress was consistent with elevated levels of oxidative stress in mitochondria of scallops. In hypoxia-tolerant clams, mitochondrial SOX capacity was enhanced during hypoxia and continued rising during the first hour of reoxygenation. In both species, the mitochondrial PHOS capacity was suppressed during hypoxia, likely to prevent ATP wastage by the reverse action of FO,F1-ATPase. The PHOS capacity recovered after 1 h of reoxygenation in clams but not in scallops. Compared with scallops, clams showed a greater suppression of energy-consuming processes (such as protein turnover and ion transport) during hypoxia, indicated by inactivation of the translation initiation factor EIF-2α, suppression of 26S proteasome activity and a dramatic decrease in the activity of Na(+)/K(+)-ATPase. The steady-state levels of adenylates were preserved during H/R exposure and AMP-dependent protein kinase was not activated in either species, indicating that the H/R exposure did not lead to severe energy deficiency. Taken together, our findings suggest that mitochondrial reorganizations sustaining high oxidative phosphorylation flux during recovery, combined with the ability to suppress ATP-demanding cellular functions during hypoxia, may contribute to high resilience of clams to H/R stress and help maintain energy homeostasis during frequent H/R cycles in the intertidal zone.


Asunto(s)
Organismos Acuáticos/fisiología , Metabolismo Energético , Hipoxia/fisiopatología , Mercenaria/fisiología , Mitocondrias/metabolismo , Pectinidae/fisiología , Aconitato Hidratasa/genética , Aconitato Hidratasa/metabolismo , Adenosina Difosfato/farmacología , Aerobiosis/efectos de los fármacos , Anaerobiosis/efectos de los fármacos , Animales , Organismos Acuáticos/efectos de los fármacos , Biomarcadores/metabolismo , Metabolismo Energético/efectos de los fármacos , Hepatopáncreas/efectos de los fármacos , Hepatopáncreas/fisiopatología , Homeostasis/efectos de los fármacos , Cinética , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mercenaria/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Oxígeno/farmacología , Pectinidae/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteasa La/genética , Proteasa La/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Protones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Descanso/fisiología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Estrés Fisiológico/efectos de los fármacos
9.
HPB (Oxford) ; 16(6): 534-42, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24750398

RESUMEN

BACKGROUND: Hepatic regeneration requires coordinated signal transduction for efficient restoration of functional liver mass. This study sought to determine changes in lysophosphatidic acid (LPA) and LPA receptor (LPAR) 1-6 expression in regenerating liver following two-thirds partial hepatectomy (PHx). METHODS: Liver tissue and blood were collected from male C57BL/6 mice following PHx. Circulating LPA was measured by enzyme-linked immunosorbent assay (ELISA) and hepatic LPAR mRNA and protein expression were determined. RESULTS: Circulating LPA increased 72 h after PHx and remained significantly elevated for up to 7 days post-PHx. Analysis of LPAR expression after PHx demonstrated significant increases in LPAR1, LPAR3 and LPAR6 mRNA and protein in a time-dependent manner for up to 7 days post-PHx. Conversely, LPAR2, LPAR4 and LPAR5 mRNA were barely detected in normal liver and did not significantly change after PHx. Changes in LPAR1 expression were confined to non-parenchymal cells following PHx. CONCLUSIONS: Liver regeneration following PHx is associated with significant changes in circulating LPA and hepatic LPAR1, LPAR3 and LPAR6 expression in a time- and cell-dependent manner. Furthermore, changes in LPA-LPAR post-PHx occur after the first round of hepatocyte division is complete.


Asunto(s)
Hepatectomía/métodos , Regeneración Hepática , Hígado/cirugía , Receptores del Ácido Lisofosfatídico/metabolismo , Animales , Proliferación Celular , Regulación de la Expresión Génica , Hígado/metabolismo , Hígado/patología , Hígado/fisiopatología , Lisofosfolípidos/metabolismo , Masculino , Ratones Endogámicos C57BL , Modelos Animales , ARN Mensajero/metabolismo , Receptores del Ácido Lisofosfatídico/genética , Transducción de Señal , Factores de Tiempo
10.
J Surg Res ; 180(1): 104-13, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23182454

RESUMEN

BACKGROUND: Lysophosphatidic acid (LPA) is a ubiquitously expressed phospholipid that regulates diverse cellular functions. Previously identified LPA receptor subtypes (LPAR1-5) are weakly expressed or absent in the liver. This study sought to determine LPAR expression, including the newly identified LPAR6, in normal human liver (NL), hepatocellular carcinoma (HCC), and non-tumor liver tissue (NTL), and LPAR expression and function in human hepatoma cells in vitro. METHODS: We determined LPAR1-6 expression by quantitative reverse transcriptase polymerase chain reaction, Western blot, or immunohistochemistry in NL, NTL, and HCC, and HuH7, and HepG2 cells. Hepatoma cells were treated with LPA in the absence or presence of LPAR1-3 (Ki16425) or pan-LPAR (α-bromomethylene phosphonate) antagonists and proliferation and motility were measured. RESULTS: We report HCC-associated changes in LPAR1, 3, and 6 mRNA and protein expression, with significantly increased LPAR6 in HCC versus NL and NTL. Analysis of human hepatoma cells demonstrated significantly higher LPAR1, 3, and 6 mRNA and protein expression in HuH7 versus HepG2 cells. Treatment with LPA (0.05-10 µg/mL) led to dose-dependent HuH7 growth and increased motility. In HepG2 cells, LPA led to moderate, although significant, increases in proliferation but not motility. Pretreatment with α-bromomethylene phosphonate inhibited LPA-dependent proliferation and motility to a greater degree than Ki16425. CONCLUSIONS: Multiple LPAR forms are expressed in human HCC, including the recently described LPAR6. Inhibition of LPA-LPAR signaling inhibits HCC cell proliferation and motility, the extent of which depends on LPAR subtype expression.


Asunto(s)
Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Receptores del Ácido Lisofosfatídico/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma Hepatocelular/química , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Neoplasias Hepáticas/química , Lisofosfolípidos/farmacología , Masculino , Persona de Mediana Edad , ARN Mensajero/análisis , Receptores del Ácido Lisofosfatídico/análisis , Receptores del Ácido Lisofosfatídico/genética
11.
Mar Environ Res ; 183: 105834, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36521302

RESUMEN

Zinc oxide nanoparticles are released into marine environments from industrial, medical and consumer uses sparking concerns about their potential ecotoxicological effects. Ecological hazard assessment of nZnO in marine ecosystems is hindered by the lack of understanding of the potential interactive effects of nZnO toxicity with other common abiotic stressors, such as salinity fluctuations, in marine organisms. To close this gap in our knowledge, we carried out a comprehensive biomarker-based assessment of the combined effects of salinity and nZnO in a sentinel marine bivalve, the blue mussels Mytilus edulis. The mussels were exposed for 21 days to clean seawater (control), an environmentally relevant concentration (100 µg Zn l-1) of nZnO or dissolved Zn (to identify the toxic effects attributable to Zn2+ toxicity) under the normal (15), low (5) and fluctuating (5-15) salinity regimes. The selected molecular and biochemical markers focused on the oxidative stress, apoptosis, detoxification system and inflammation in the gills and the digestive gland of the mussels. Biomarker analysis showed different effects of nZnO and dissolved Zn on biomarkers of oxidative stress, xenobiotic detoxification and apoptosis but similar effects of both pollutants on the levels of metallothioneins and inflammatory markers. Exposure to nZnO led to elevated levels of lipid peroxidation, upregulation of p53 and p38 stress kinases and apoptosis-related genes, most notably in the gills. Exposure to dissolved Zn led to accumulation of protein carbonyls and activated redox-sensitive detoxification enzymes (NADPH-P450 reductase and glutathione-S-transferase) in the mussels. The ambient salinity had significant effects the cellular adverse effects of nZnO in the mussels. The nZnO-induced cellular stress was detectable under the normal (15) and fluctuating (5-15) salinity conditions in the studied brackish water population of the mussels. At low salinity (5), nZnO toxicity signal was almost completely dampened. These findings indicate that chronic osmotic stress close to the tolerance limits of M. edulis prevails over the effects of the environmentally relevant nZnO and dissolved Zn concentrations in combined exposures. These stressor interactions might ameliorate the cellular toxicity of nZnO in the mussels but limit applicability of cellular stress biomarkers for detecting the toxic effects of nanopollutants in low salinity habitats.


Asunto(s)
Mytilus edulis , Mytilus , Contaminantes Químicos del Agua , Óxido de Zinc , Animales , Óxido de Zinc/toxicidad , Óxido de Zinc/química , Mytilus edulis/metabolismo , Salinidad , Ecosistema , Estrés Oxidativo , Biomarcadores/metabolismo , Contaminantes Químicos del Agua/toxicidad , Mytilus/metabolismo
12.
Environ Pollut ; 332: 121964, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37286024

RESUMEN

Sediment contamination and seawater warming are two major stressors to macrobenthos in estuaries. However, little is known about their combined effects on infaunal organisms. Here we investigated the responses of an estuarine polychaete Hediste diversicolor to metal-contaminated sediment and increased temperature. Ragworms were exposed to sediments spiked with 10 and 20 mg kg-1 of copper at 12 and 20 °C for three weeks. No considerable changes were observed in the expression of genes related to copper homeostasis and in the accumulation of oxidative stress damage. Dicarbonyl stress was attenuated by warming exposure. Whole-body energy reserves in the form of carbohydrates, lipids and proteins were little affected, but the energy consumption rate increased with copper exposure and elevated temperature, indicating higher basal maintenance costs of ragworms. The combined effects of copper and warming exposures were mostly additive, with copper being a weak stressor and warming a more potent stressor. These results were replicable, as confirmed by two independent experiments of similar settings conducted at two different months of the year. This study suggests the higher sensitivity of energy-related biomarkers and the need to search for more conserved molecular markers of metal exposure in H. diversicolor.


Asunto(s)
Poliquetos , Contaminantes Químicos del Agua , Animales , Cobre/metabolismo , Temperatura , Agua de Mar , Estrés Oxidativo , Poliquetos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Sedimentos Geológicos
13.
Chemosphere ; 309(Pt 1): 136736, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36209850

RESUMEN

Organic UV filters have emerged as a new threat to marine organisms, but ecotoxicological studies have so far focused on only a few substances despite the chemical diversity of these synthetic sunscreen agents. Here we examined the responses of blue mussels Mytilus edulis to ensulizole, a non-lipophilic UV filter commonly found in the Baltic Sea. Mussels were exposed for three weeks to five ensulizole concentrations of 10, 102, 103, 104, and 105 ng/L. Stress on stress response was evaluated by subjecting mussels to air exposure. A battery of biomarkers related to detoxification and antioxidant defense, oxidative stress damage, energy reserves and metabolism, autophagy, apoptosis, inflammation, and DNA damage was measured in the gills and the digestive gland. In general, ensulizole affected the antioxidant response, energy storage, and cell death-related processes in mussel tissues. Mussels exposed to low, environmentally relevant concentrations of ensulizole had a shorter air survival time than the control. Ensulizole often showed the non-monotonic concentration-response curves, suggesting the complex effects of this UV filter at molecular, biochemical, and organismal levels.


Asunto(s)
Mytilus edulis , Mytilus , Contaminantes Químicos del Agua , Animales , Mytilus edulis/metabolismo , Protectores Solares/toxicidad , Antioxidantes/metabolismo , Contaminantes Químicos del Agua/toxicidad , Biomarcadores/metabolismo , Mytilus/metabolismo
14.
Sci Total Environ ; 818: 151785, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-34808156

RESUMEN

Temperature is an important abiotic factor that modulates all aspects of ectotherm physiology, including sensitivity to pollutants. Nanoparticles are emerging pollutants in coastal environments, and their potential to cause toxicity in marine organisms is a cause for concern. Here we studied the interactive effects of temperature (including seasonal and experimental warming) on sublethal toxicity of ZnO nanoparticles (nano-ZnO) in a model marine bivalve, the blue mussel Mytilus edulis. Molecular markers were used to assess the pollutant-induced cellular stress responses in the gills and the digestive gland of mussels exposed for 21 days to 10 µg l-1 and 100 µg l-1 of nano-ZnO or dissolved Zn under different temperature regimes including ambient temperature (10 °C and 15 °C in winter and summer, respectively) or experimental warming (+5 °C). Exposure to high concentration (100 µg l-1) of nano-ZnO caused oxidative injury to proteins and lipids and induced a marked apoptotic response indicated by increased transcript levels of apoptosis-related genes p53, caspase 3 and the MAPK pathway (JNK and p38) and decreased mRNA expression of anti-apoptotic Bcl-2. No significant induction of inflammatory cytokine-related response (TGF-ß and NF-κB) of tissues was observed in nano-ZnO exposed-mussels. Furthermore, the oxidative injury and apoptotic response could differentiate the effects of nano-ZnO from those of dissolved Zn in the mussels. This study revealed that oxidative stress and stress-related transcriptional responses to nano-ZnO were strongly modified by warming and season in the mussels. No single biomarker could be shown to consistently respond to nano-ZnO in all experimental groups, which implies that multiple biomarkers are needed to assess nano-ZnO toxicity to marine organisms under the variable environmental conditions of coastal habitats.


Asunto(s)
Mytilus edulis , Mytilus , Nanopartículas , Contaminantes Químicos del Agua , Óxido de Zinc , Animales , Mytilus/metabolismo , Nanopartículas/toxicidad , Estrés Oxidativo , Temperatura , Contaminantes Químicos del Agua/análisis , Óxido de Zinc/farmacología
15.
Sci Rep ; 12(1): 19881, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400902

RESUMEN

Oxygen fluctuations might occur in mammalian tissues under physiological (e.g. at high altitudes) or pathological (e.g. ischemia-reperfusion) conditions. Mitochondria are the key target and potential amplifiers of hypoxia-reoxygenation (H-R) stress. Understanding the mitochondrial responses to H-R stress is important for identifying adaptive mechanisms and potential therapeutic solutions for pathologies associated with oxygen fluctuations. We explored metabolic response to H-R stress in two tissue types (muscle and brain) with different degrees of hypoxia tolerance in a domestic pig Sus scrofa focusing on the cellular responses independent of the systemic regulatory mechanisms. Isolated cells from the skeletal muscle (masseter) and brain (thalamus) were exposed to acute short-term (15 min) hypoxia followed by reoxygenation. The mitochondrial oxygen consumption, reactive oxygen species (ROS) production rates and transcriptional profiles of hypoxia-responsive mRNA and miRNA were determined. Mitochondria of the porcine brain cells showed a decrease in the resting respiration and ATP synthesis capacity whereas the mitochondria from the muscle cells showed robust respiration and less susceptibility to H-R stress. ROS production was not affected by the short-term H-R stress in the brain or muscle cells. Transcriptionally, prolyl hydroxylase domain protein EGLN3 was upregulated during hypoxia and suppressed during reoxygenation in porcine muscle cells. The decline in EGLN3 mRNA during reoxygenation was accompanied by an upregulation of hypoxia-inducible factor subunit α (HIF1A) transcripts in the muscle cells. However, in the brain cells, HIF1A mRNA levels were suppressed during reoxygenation. Other functionally important transcripts and miRNAs involved in antioxidant response, apoptosis, inflammation, and substrate oxidation were also differentially expressed between the muscle and brain cells. Suppression of miRNA levels during acute intermittent hypoxia was stronger in the brain cells affecting ~ 55% of all studied miRNA transcripts than in the muscle cells (~ 25% of miRNA) signifying transcriptional derepression of the respective mRNA targets. Our study provides insights into the potential molecular and physiological mechanisms contributing to different hypoxia sensitivity of the studied tissues and can serve as a starting point to better understand the biological processes associated with hypoxia stress, e.g. during ischemia and reperfusion.


Asunto(s)
MicroARNs , Mitocondrias , Animales , Porcinos , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Oxígeno/metabolismo , Encéfalo/metabolismo , Células Musculares/metabolismo , ARN Mensajero/metabolismo , Músculos/metabolismo , MicroARNs/metabolismo , Mamíferos/metabolismo
16.
Chemosphere ; 263: 127780, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32814131

RESUMEN

Input of ZnO nanoparticles (nZnO) from multiple sources have raised concerns about the potential toxic effects on estuarine and coastal organisms. The toxicity of nZnO and its interaction with common abiotic stressors (such as elevated temperature) are not well understood in these organisms. Here, we examined the bioenergetics responses of the blue mussel Mytilus edulis exposed for 21 days to different concentrations of nZnO or dissolved zinc (Zn2+) (0, 10, 100 µg l-1) and two temperatures (ambient and 5 °C warmer) in winter and summer. Exposure to nZnO had little effect on the protein and lipid levels, but led to a significant depletion of carbohydrates and a decrease in the electron transport system (ETS) activity. Qualitatively similar but weaker effects were found for dissolved Zn. In winter mussels, elevated temperature (15 °C) led to elevated protein and lipid levels increasing the total energy content of the tissues. In contrast, elevated temperature (20 °C) resulted in a decrease in the lipid and carbohydrate levels and suppressed ETS in summer mussels. These data indicate that moderate warming in winter (but not in summer) might partially compensate for the bioenergetics stress caused by nZnO toxicity in M. edulis from temperate areas such as the Baltic Sea.


Asunto(s)
Mytilus edulis , Mytilus , Contaminantes Químicos del Agua , Óxido de Zinc , Animales , Metabolismo Energético , Estaciones del Año , Temperatura , Contaminantes Químicos del Agua/toxicidad , Óxido de Zinc/toxicidad
17.
Artículo en Inglés | MEDLINE | ID: mdl-34004351

RESUMEN

Benthic animals inhabiting the edges of marine oxygen minimum zones (OMZ) are exposed to unpredictable large fluctuations of oxygen levels. Sessile organisms including bivalves must depend on physiological adaptations to withstand these conditions. However, as habitats are rather inaccessible, physiological adaptations of the OMZ margin inhabitants to oxygen fluctuations are not well understood. We therefore investigated the transcriptional responses of selected key genes involved in energy metabolism and stress protection in a dominant benthic species of the northern edge of the Namibian OMZ, the nuculanid clam Lembulus bicuspidatus,. We exposed clams to normoxia (~5.8 ml O2 l-1), severe hypoxia (36 h at ~0.01 ml O2 l-1) and post-hypoxic recovery (24 h of normoxia following 36 h of severe hypoxia). Using newly identified gene sequences, we determined the transcriptional responses to hypoxia and reoxygenation of the mitochondrial aerobic energy metabolism (pyruvate dehydrogenase E1 complex, cytochrome c oxidase, citrate synthase, and adenine nucleotide translocator), anaerobic glycolysis (hexokinase (HK), phosphoenolpyruvate carboxykinase (PEPCK), phosphofructokinase, and aldolase), mitochondrial antioxidants (glutaredoxin, peroxiredoxin, and uncoupling protein UCP2) and stress protection mechanisms (a molecular chaperone HSP70 and a mitochondrial quality control protein MIEAP) in the gills and the labial palps of L. bicuspidatus. Exposure to severe hypoxia transcriptionally stimulated anaerobic glycolysis (including HK and PEPCK), antioxidant protection (UCP2), and quality control mechanisms (HSP70 and MIEAP) in the gills of L. bicuspidatus. Unlike UCP2, mRNA levels of the thiol-dependent mitochondrial antioxidants were not affected by hypoxia-reoxygenation stress. Transcript levels of marker genes for aerobic energy metabolism were not responsive to oxygen fluctuations in L. bicuspidatus. Our findings highlight the probable importance of anaerobic succinate production (via PEPCK) and mitochondrial and proteome quality control mechanisms in responses to oxygen fluctuations of the OMZ bivalve L.bicuspidatus. The reaction of L.bicuspidatus to oxygen fluctuations implies parallels to that of other hypoxia-tolerant bivalves, such as intertidal species.


Asunto(s)
Bivalvos/metabolismo , Metabolismo Energético , Hipoxia/fisiopatología , Mitocondrias/patología , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo , Oxígeno/metabolismo , Animales , Glucólisis , Mitocondrias/metabolismo
18.
Sci Total Environ ; 798: 149171, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34329935

RESUMEN

The global occurrence of organic UV filters in the marine environment is of increasing ecotoxicological concern. Here we assessed the toxicity of UV filters ensulizole and octocrylene in the blue mussels Mytilus edulis exposed to 10 or 100 µg l-1 of octocrylene and ensulizole for two weeks. An integrated battery of biochemical and molecular biomarkers related to xenobiotics metabolism and cellular toxicity (including oxidative stress, DNA damage, apoptosis, autophagy and inflammation) was used to assess the toxicity of these UV filters in the mussels. Octocrylene (but not ensulizole) accumulated in the mussel tissues during the waterborne exposures. Both studied UV filters induced sublethal toxic effects in M. edulis at the investigated concentrations. These effects involved induction of oxidative stress, genotoxicity (indicated by upregulation of DNA damage sensing and repair markers), upregulation of apoptosis and inflammation, and dysregulation of the xenobiotic biotransformation system. Octocrylene induced cellular stress in a concentration-dependent manner, whereas ensulizole appeared to be more toxic at the lower (10 µg l-1) studied concentration than at 100 µg l-1. The different concentration-dependence of sublethal effects and distinct toxicological profiles of ensulizole and octocrylene show that the environmental toxicity is not directly related to lipophilicity and bioaccumulation potential of these UV filters and demonstrate the importance of using bioassays for toxicity assessment of emerging pollutants in coastal marine ecosystems.


Asunto(s)
Mytilus edulis , Mytilus , Contaminantes Químicos del Agua , Acrilatos , Animales , Bencimidazoles , Biomarcadores , Ecosistema , Ácidos Sulfónicos , Protectores Solares/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
19.
Sci Total Environ ; 774: 145195, 2021 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-33609850

RESUMEN

Engineered nanoparticles including ZnO nanoparticles (nZnO) are important emerging pollutants in aquatic ecosystems creating potential risks to coastal ecosystems and associated biota. The toxicity of nanoparticles and its interaction with the important environmental stressors (such as salinity variation) are not well understood in coastal organisms and require further investigation. Here, we examined the interactive effects of 100 µg l-1 nZnO or dissolved Zn (as a positive control for Zn2+ release) and salinity (normal 15, low 5, and fluctuating 5-15) on bioenergetics and intermediate metabolite homeostasis of a keystone marine bivalve, the blue mussel Mytilus edulis from the Baltic Sea. nZnO exposures did not lead to strong disturbances in energy or intermediate metabolite homeostasis regardless of the salinity regime. Dissolved Zn exposures suppressed the mitochondrial ATP synthesis capacity and coupling as well as anaerobic metabolism and modified the free amino acid profiles in the mussels indicating that dissolved Zn is metabolically more damaging than nZnO. The environmental salinity regime strongly affected metabolic homeostasis and altered physiological and biochemical responses to nZnO or dissolved Zn in the mussels. Exposure to low (5) or fluctuating (5-15) salinity affected the physiological condition, energy metabolism and homeostasis, as well as amino acid metabolism in M. edulis. Generally, fluctuating salinity (5-15) appeared bioenergetically less stressful than constantly hypoosmotic stress (salinity 5) in M. edulis indicating that even short (24 h) periods of recovery might be sufficient to restore the metabolic homeostasis in this euryhaline species. Notably, the biological effects of nZnO and dissolved Zn became progressively less detectable as the salinity stress increased. These findings demonstrate that habitat salinity must be considered in the biomarker-based assessment of the toxic effects of nanopollutants on coastal organisms.


Asunto(s)
Mytilus edulis , Mytilus , Nanopartículas , Contaminantes Químicos del Agua , Óxido de Zinc , Animales , Ecosistema , Metabolismo Energético , Homeostasis , Salinidad , Contaminantes Químicos del Agua/toxicidad , Óxido de Zinc/toxicidad
20.
Mol Biol Cell ; 17(8): 3484-93, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16760429

RESUMEN

The adhesion receptor E-cadherin maintains cell-cell junctions by continuously forming short-lived adhesive dimers. Here mixed culture cross-linking and coimmunoprecipitation assays were used to determine the dynamics of adhesive dimer assembly. We showed that the amount of these dimers increased dramatically minutes after the inhibition of endocytosis by ATP depletion or by hypertonic sucrose. This increase was accompanied by the efficient recruitment of E-cadherin into adherens junctions. After 10 min, when the adhesive dimer amount had reached a plateau, the assembly of new dimers stalled completely. These cells, in a striking difference from the control, became unable to disintegrate both their intercellular contacts and adhesive dimers in response to calcium depletion. The same effects, but after a slightly longer time course, were obtained using acidic media, another potent approach inhibiting endocytosis. These data suggest that endocytosis is the main pathway for the dissociation of E-cadherin adhesive dimers. Its inhibition blocks the replenishment of the monomeric cadherin pool, thereby inhibiting new dimer formation. This suggestion has been corroborated by immunoelectron microscopy, which revealed cadherin-enriched coated pit-like structures in close association with adherens junctions.


Asunto(s)
Uniones Adherentes/metabolismo , Cadherinas/metabolismo , Endocitosis , Transporte Activo de Núcleo Celular , Adenosina Trifosfato/deficiencia , Uniones Adherentes/efectos de los fármacos , Uniones Adherentes/ultraestructura , Adhesividad/efectos de los fármacos , Cadherinas/química , Cadherinas/ultraestructura , Calcio/metabolismo , Núcleo Celular/metabolismo , Reactivos de Enlaces Cruzados , Dimerización , Endocitosis/efectos de los fármacos , Humanos , Soluciones Hipertónicas/farmacología , Cinética , Sacarosa/farmacología , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA