Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Traffic ; 25(1): e12927, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38272446

RESUMEN

Endoplasmic reticulum (ER) retention of misfolded glycoproteins is mediated by the ER-localized eukaryotic glycoprotein secretion checkpoint, UDP-glucose glycoprotein glucosyl-transferase (UGGT). The enzyme recognizes a misfolded glycoprotein and flags it for ER retention by re-glucosylating one of its N-linked glycans. In the background of a congenital mutation in a secreted glycoprotein gene, UGGT-mediated ER retention can cause rare disease, even if the mutant glycoprotein retains activity ("responsive mutant"). Using confocal laser scanning microscopy, we investigated here the subcellular localization of the human Trop-2-Q118E, E227K and L186P mutants, which cause gelatinous drop-like corneal dystrophy (GDLD). Compared with the wild-type Trop-2, which is correctly localized at the plasma membrane, these Trop-2 mutants are retained in the ER. We studied fluorescent chimeras of the Trop-2 Q118E, E227K and L186P mutants in mammalian cells harboring CRISPR/Cas9-mediated inhibition of the UGGT1 and/or UGGT2 genes. The membrane localization of the Trop-2 Q118E, E227K and L186P mutants was successfully rescued in UGGT1-/- cells. UGGT1 also efficiently reglucosylated Trop-2-Q118E-EYFP in cellula. The study supports the hypothesis that UGGT1 modulation would constitute a novel therapeutic strategy for the treatment of pathological conditions associated to misfolded membrane glycoproteins (whenever the mutation impairs but does not abrogate function), and it encourages the testing of modulators of ER glycoprotein folding quality control as broad-spectrum rescue-of-secretion drugs in rare diseases caused by responsive secreted glycoprotein mutants.


Asunto(s)
Pliegue de Proteína , Enfermedades Raras , Animales , Humanos , Enfermedades Raras/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Retículo Endoplásmico/metabolismo , Mutación , Mamíferos/metabolismo , Glucosiltransferasas/metabolismo
2.
EMBO Rep ; 25(6): 2773-2785, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38773321

RESUMEN

The endoplasmic reticulum (ER) produces proteins destined to organelles of the endocytic and secretory pathways, the plasma membrane, and the extracellular space. While native proteins are transported to their intra- or extracellular site of activity, folding-defective polypeptides are retro-translocated across the ER membrane into the cytoplasm, poly-ubiquitylated and degraded by 26 S proteasomes in a process called ER-associated degradation (ERAD). Large misfolded polypeptides, such as polymers of alpha1 antitrypsin Z (ATZ) or mutant procollagens, fail to be dislocated across the ER membrane and instead enter ER-to-lysosome-associated degradation (ERLAD) pathways. Here, we show that pharmacological or genetic inhibition of ERAD components, such as the α1,2-mannosidase EDEM1 or the OS9 ERAD lectins triggers the delivery of the canonical ERAD clients Null Hong Kong (NHK) and BACE457Δ to degradative endolysosomes under control of the ER-phagy receptor FAM134B and the LC3 lipidation machinery. Our results reveal that ERAD dysfunction is compensated by the activation of FAM134B-driven ERLAD pathways that ensure efficient lysosomal clearance of orphan ERAD clients.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico , Lisosomas , Proteínas de la Membrana , Lisosomas/metabolismo , Humanos , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Secretasas de la Proteína Precursora del Amiloide/metabolismo , alfa 1-Antitripsina/metabolismo , alfa 1-Antitripsina/genética , Animales , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Pliegue de Proteína , Transporte de Proteínas , Lectinas/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Ácido Aspártico Endopeptidasas/genética , Ratones , Células HeLa
3.
EMBO J ; 40(15): e107240, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34152647

RESUMEN

Efficient degradation of by-products of protein biogenesis maintains cellular fitness. Strikingly, the major biosynthetic compartment in eukaryotic cells, the endoplasmic reticulum (ER), lacks degradative machineries. Misfolded proteins in the ER are translocated to the cytosol for proteasomal degradation via ER-associated degradation (ERAD). Alternatively, they are segregated in ER subdomains that are shed from the biosynthetic compartment and are delivered to endolysosomes under control of ER-phagy receptors for ER-to-lysosome-associated degradation (ERLAD). Demannosylation of N-linked oligosaccharides targets terminally misfolded proteins for ERAD. How misfolded proteins are eventually marked for ERLAD is not known. Here, we show for ATZ and mutant Pro-collagen that cycles of de-/re-glucosylation of selected N-glycans and persistent association with Calnexin (CNX) are required and sufficient to mark ERAD-resistant misfolded proteins for FAM134B-driven lysosomal delivery. In summary, we show that mannose and glucose processing of N-glycans are triggering events that target misfolded proteins in the ER to proteasomal (ERAD) and lysosomal (ERLAD) clearance, respectively, regulating protein quality control in eukaryotic cells.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/fisiología , Lisosomas/metabolismo , Polisacáridos/metabolismo , Animales , Calnexina/genética , Calnexina/metabolismo , Fibroblastos/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Humanos , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones , Oligosacáridos/metabolismo , Procolágeno/genética , Procolágeno/metabolismo , Pliegue de Proteína , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(51): e2214957119, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36508673

RESUMEN

Secretory proteins and lipids are biosynthesized in the endoplasmic reticulum (ER). The "protein quality control" system (PQC) monitors glycoprotein folding and supports the elimination of terminally misfolded polypeptides. A key component of the PQC system is Uridine diphosphate glucose:glycoprotein glucosyltransferase 1 (UGGT1). UGGT1 re-glucosylates unfolded glycoproteins, to enable the re-entry in the protein-folding cycle and impede the aggregation of misfolded glycoproteins. In contrast, a complementary "lipid quality control" (LQC) system that maintains lipid homeostasis remains elusive. Here, we demonstrate that cytotoxic phosphatidic acid derivatives with saturated fatty acyl chains are one of the physiological substrates of UGGT2, an isoform of UGGT1. UGGT2 produces lipid raft-resident phosphatidylglucoside regulating autophagy. Under the disruption of lipid metabolism and hypoxic conditions, UGGT2 inhibits PERK-ATF4-CHOP-mediated apoptosis in mouse embryonic fibroblasts. Moreover, the susceptibility of UGGT2 KO mice to high-fat diet-induced obesity is elevated. We propose that UGGT2 is an ER-localized LQC component that mitigates saturated lipid-associated ER stress via lipid glucosylation.


Asunto(s)
Fibroblastos , Glucosiltransferasas , Animales , Ratones , Fibroblastos/metabolismo , Glucosiltransferasas/metabolismo , Estrés del Retículo Endoplásmico , Glicoproteínas/metabolismo , Lípidos
5.
EMBO J ; 37(17)2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30076131

RESUMEN

Maintenance of cellular proteostasis relies on efficient clearance of defective gene products. For misfolded secretory proteins, this involves dislocation from the endoplasmic reticulum (ER) into the cytosol followed by proteasomal degradation. However, polypeptide aggregation prevents cytosolic dislocation and instead activates ill-defined lysosomal catabolic pathways. Here, we describe an ER-to-lysosome-associated degradation pathway (ERLAD) for proteasome-resistant polymers of alpha1-antitrypsin Z (ATZ). ERLAD involves the ER-chaperone calnexin (CNX) and the engagement of the LC3 lipidation machinery by the ER-resident ER-phagy receptor FAM134B, echoing the initiation of starvation-induced, receptor-mediated ER-phagy. However, in striking contrast to ER-phagy, ATZ polymer delivery from the ER lumen to LAMP1/RAB7-positive endolysosomes for clearance does not require ER capture within autophagosomes. Rather, it relies on vesicular transport where single-membrane, ER-derived, ATZ-containing vesicles release their luminal content within endolysosomes upon membrane:membrane fusion events mediated by the ER-resident SNARE STX17 and the endolysosomal SNARE VAMP8. These results may help explain the lack of benefits of pharmacologic macroautophagy enhancement that has been reported for some luminal aggregopathies.


Asunto(s)
Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Lisosomas/genética , Proteolisis , alfa 1-Antitripsina/metabolismo , Animales , Transporte Biológico Activo/fisiología , Calnexina/genética , Calnexina/metabolismo , Retículo Endoplásmico/genética , Endosomas/genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , alfa 1-Antitripsina/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
6.
PLoS Genet ; 15(4): e1008069, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30995221

RESUMEN

In the peripheral nervous system (PNS) myelinating Schwann cells synthesize large amounts of myelin protein zero (P0) glycoprotein, an abundant component of peripheral nerve myelin. In humans, mutations in P0 cause the demyelinating Charcot-Marie-Tooth 1B (CMT1B) neuropathy, one of the most diffused genetic disorders of the PNS. We previously showed that several mutations, such as the deletion of serine 63 (P0-S63del), result in misfolding and accumulation of P0 in the endoplasmic reticulum (ER), with activation of the unfolded protein response (UPR). In addition, we observed that S63del mouse nerves display the upregulation of many ER-associated degradation (ERAD) genes, suggesting a possible involvement of this pathway in the clearance of the mutant P0. In ERAD in fact, misfolded proteins are dislocated from the ER and targeted for proteasomal degradation. Taking advantage of inducible cells that express the ER retained P0, here we show that the P0-S63del glycoprotein is degraded via ERAD. Moreover, we provide strong evidence that the Schwann cell-specific ablation of the ERAD factor Derlin-2 in S63del nerves exacerbates both the myelin defects and the UPR in vivo, unveiling a protective role for ERAD in CMT1B neuropathy. We also found that lack of Derlin-2 affects adult myelin maintenance in normal nerves, without compromising their development, pinpointing ERAD as a previously unrecognized player in preserving Schwann cells homeostasis in adulthood. Finally, we provide evidence that treatment of S63del peripheral nerve cultures with N-Acetyl-D-Glucosamine (GlcNAc), known to enhance protein quality control pathways in C.elegans, ameliorates S63del nerve myelination ex vivo. Overall, our study suggests that potentiating adaptive ER quality control pathways might represent an appealing strategy to treat both conformational and age-related PNS disorders.


Asunto(s)
Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Vaina de Mielina/metabolismo , Nervios Periféricos/metabolismo , Células de Schwann/metabolismo , Animales , Biomarcadores , Línea Celular , Enfermedades Desmielinizantes/patología , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Homeostasis , Humanos , Ratones , Nervios Periféricos/ultraestructura , Nervio Ciático/metabolismo
7.
Biochem Biophys Res Commun ; 503(2): 938-943, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-29932915

RESUMEN

The Endoplasmic Reticulum (ER) is site of production of secretory and membrane proteins in eukaryotic cells. The ER does not contain catabolic devices and misfolded proteins generated in its lumen must be dislocated across the ER membrane before clearance by cytosolic proteasomes (ER-Associated Degradation, ERAD). How misfolded proteins are dislocated across the ER membrane is a matter of controversy. For example, it remains to be established if polypeptide unfolding is always required. If unfolding is a pre-requisite for dislocation as emerging evidences seem to indicate, it is likely that the incorrect set of disulfide bonds established during unsuccessful folding-attempts that precede selection for ERAD must be reduced to eliminate tertiary and quaternary structures that could hamper dislocation. The lumen of the mammalian ER contains more than 20 members of the PDI family, a handful of which plays a role in ERAD. Here we add the atypical, membrane-bound reductase TMX1 to this list and we show that TMX1 preferentially acts on membrane-tethered folding-defective polypeptides essentially ignoring the same misfolded ectodomains, when not associated to the ER membrane. As such, TMX1 is the first example of a topology-specific client protein redox catalyst acting both in the folding and in the degradative pathways.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Péptidos/metabolismo , Pliegue de Proteína , Tiorredoxinas/metabolismo , Retículo Endoplásmico/química , Células HEK293 , Humanos , Modelos Moleculares , Oxidación-Reducción , Péptidos/química , Dominios Proteicos
8.
J Biol Chem ; 290(39): 23631-45, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26170458

RESUMEN

Although the accumulation of a misfolded and protease-resistant form of the prion protein (PrP) is a key event in prion pathogenesis, the cellular factors involved in its folding and quality control are poorly understood. PrP is a glycosylated and disulfide-bonded protein synthesized at the endoplasmic reticulum (ER). The ER foldase ERp57 (also known as Grp58) is highly expressed in the brain of sporadic and infectious forms of prion-related disorders. ERp57 is a disulfide isomerase involved in the folding of a subset of glycoproteins in the ER as part of the calnexin/calreticulin cycle. Here, we show that levels of ERp57 increase mainly in neurons of Creutzfeldt-Jacob patients. Using gain- and loss-of-function approaches in cell culture, we demonstrate that ERp57 expression controls the maturation and total levels of wild-type PrP and mutant forms associated with human disease. In addition, we found that PrP physically interacts with ERp57, and also with the closest family member PDIA1, but not ERp72. Furthermore, we generated a conditional knock-out mouse for ERp57 in the nervous system and detected a reduction in the steady-state levels of the mono- and nonglycosylated forms of PrP in the brain. In contrast, ERp57 transgenic mice showed increased levels of endogenous PrP. Unexpectedly, ERp57 expression did not affect the susceptibility of cells to ER stress in vitro and in vivo. This study identifies ERp57 as a new modulator of PrP levels and may help with understanding the consequences of ERp57 up-regulation observed in human disease.


Asunto(s)
Priones/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Animales , Línea Celular , Síndrome de Creutzfeldt-Jakob/metabolismo , Humanos , Ratones , Ratones Noqueados , Neuronas/metabolismo , Pliegue de Proteína
9.
Traffic ; 14(7): 767-77, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23521725

RESUMEN

The endoplasmic reticulum-associated degradation (ERAD) machinery selects native and misfolded polypeptides for dislocation across the ER membrane and proteasomal degradation. Regulated degradation of native proteins is an important aspect of cell physiology. For example, it contributes to the control of lipid biosynthesis, calcium homeostasis and ERAD capacity by setting the turnover rate of crucial regulators of these pathways. In contrast, degradation of native proteins has pathologic relevance when caused by viral or bacterial infections, or when it occurs as a consequence of dysregulated ERAD activity. The efficient disposal of misfolded proteins prevents toxic depositions and persistent sequestration of molecular chaperones that could induce cellular stress and perturb maintenance of cellular proteostasis. In the first section of this review, we survey the available literature on mechanisms of selection of native and non-native proteins for degradation from the ER and on how pathogens hijack them. In the second section, we highlight the mechanisms of ERAD activity adaptation to changes in the ER environment with a particular emphasis on the post-translational regulatory mechanisms collectively defined as ERAD tuning.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Proteolisis , Animales , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Pliegue de Proteína
10.
Nat Commun ; 14(1): 3497, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311770

RESUMEN

The endoplasmic reticulum (ER) is an organelle of nucleated cells that produces proteins, lipids and oligosaccharides. ER volume and activity are increased upon induction of unfolded protein responses (UPR) and are reduced upon activation of ER-phagy programs. A specialized domain of the ER, the nuclear envelope (NE), protects the cell genome with two juxtaposed lipid bilayers, the inner and outer nuclear membranes (INM and ONM) separated by the perinuclear space (PNS). Here we report that expansion of the mammalian ER upon homeostatic perturbations results in TMX4 reductase-driven disassembly of the LINC complexes connecting INM and ONM and in ONM swelling. The physiologic distance between ONM and INM is restored, upon resolution of the ER stress, by asymmetric autophagy of the NE, which involves the LC3 lipidation machinery, the autophagy receptor SEC62 and the direct capture of ONM-derived vesicles by degradative LAMP1/RAB7-positive endolysosomes in a catabolic pathway mechanistically defined as micro-ONM-phagy.


Asunto(s)
Estrés del Retículo Endoplásmico , Membrana Nuclear , Animales , Estrés del Retículo Endoplásmico/genética , Autofagia , Respuesta de Proteína Desplegada , Retículo Endoplásmico , Mamíferos
11.
bioRxiv ; 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37398215

RESUMEN

Endoplasmic reticulum (ER) retention of mis-folded glycoproteins is mediated by the ERlocalised eukaryotic glycoprotein secretion checkpoint, UDP-glucose glycoprotein glucosyl-transferase (UGGT). The enzyme recognises a mis-folded glycoprotein and flags it for ER retention by reglucosylating one of its N-linked glycans. In the background of a congenital mutation in a secreted glycoprotein gene, UGGT-mediated ER retention can cause rare disease even if the mutant glycoprotein retains activity ("responsive mutant"). Here, we investigated the subcellular localisation of the human Trop-2 Q118E variant, which causes gelatinous droplike corneal dystrophy (GDLD). Compared with the wild type Trop-2, which is correctly localised at the plasma membrane, the Trop-2-Q118E variant is found to be heavily retained in the ER. Using Trop-2-Q118E, we tested UGGT modulation as a rescue-of-secretion therapeutic strategy for congenital rare disease caused by responsive mutations in genes encoding secreted glycoproteins. We investigated secretion of a EYFP-fusion of Trop-2-Q118E by confocal laser scanning microscopy. As a limiting case of UGGT inhibition, mammalian cells harbouring CRISPR/Cas9-mediated inhibition of the UGGT1 and/or UGGT2 gene expressions were used. The membrane localisation of the Trop-2-Q118E-EYFP mutant was successfully rescued in UGGT1-/- and UGGT1/2-/- cells. UGGT1 also efficiently reglucosylated Trop-2-Q118E-EYFP in cellula. The study supports the hypothesis that UGGT1 modulation constitutes a novel therapeutic strategy for the treatment of Trop-2-Q118E associated GDLD, and it encourages the testing of modulators of ER glycoprotein folding Quality Control (ERQC) as broad-spectrum rescueof-secretion drugs in rare diseases caused by responsive secreted glycoprotein mutants.

12.
PLoS One ; 18(11): e0294437, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38019733

RESUMEN

Site-directed Enzyme Enhancement Therapy (SEE-Tx®) technology is a disease-agnostic drug discovery tool that can be applied to any protein target of interest with a known three-dimensional structure. We used this proprietary technology to identify and characterize the therapeutic potential of structurally targeted allosteric regulators (STARs) of the lysosomal hydrolase ß-galactosidase (ß-Gal), which is deficient due to gene mutations in galactosidase beta 1 (GLB1)-related lysosomal storage disorders (LSDs). The biochemical HaloTag cleavage assay was used to monitor the delivery of wildtype (WT) ß-Gal and four disease-related ß-Gal variants (p.Ile51Thr, p.Arg59His, p.Arg201Cys and p.Trp273Leu) in the presence and absence of two identified STAR compounds. In addition, the ability of STARs to reduce toxic substrate was assessed in a canine fibroblast cell model. In contrast to the competitive pharmacological chaperone N-nonyl-deoxygalactonojirimycin (NN-DGJ), the two identified STAR compounds stabilized and substantially enhanced the lysosomal transport of wildtype enzyme and disease-causing ß-Gal variants. In addition, the two STAR compounds reduced the intracellular accumulation of exogenous GM1 ganglioside, an effect not observed with the competitive chaperone NN-DGJ. This proof-of-concept study demonstrates that the SEE-Tx® platform is a rapid and cost-effective drug discovery tool for identifying STARs for the treatment of LSDs. In addition, the HaloTag assay developed in our lab has proved valuable in investigating the effect of STARs in promoting enzyme transport and lysosomal delivery. Automatization and upscaling of this assay would be beneficial for screening STARs as part of the drug discovery process.


Asunto(s)
Gangliosidosis GM1 , Enfermedades por Almacenamiento Lisosomal , Animales , Perros , Gangliosidosis GM1/tratamiento farmacológico , Gangliosidosis GM1/genética , Gangliosidosis GM1/metabolismo , 1-Desoxinojirimicina/farmacología , beta-Galactosidasa/metabolismo
13.
Nat Cell Biol ; 18(11): 1173-1184, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27749824

RESUMEN

The endoplasmic reticulum (ER) is a site of protein biogenesis in eukaryotic cells. Perturbing ER homeostasis activates stress programs collectively called the unfolded protein response (UPR). The UPR enhances production of ER-resident chaperones and enzymes to reduce the burden of misfolded proteins. On resolution of ER stress, ill-defined, selective autophagic programs remove excess ER components. Here we identify Sec62, a constituent of the translocon complex regulating protein import in the mammalian ER, as an ER-resident autophagy receptor. Sec62 intervenes during recovery from ER stress to selectively deliver ER components to the autolysosomal system for clearance in a series of events that we name recovER-phagy. Sec62 contains a conserved LC3-interacting region in the C-terminal cytosolic domain that is required for its function in recovER-phagy, but is dispensable for its function in the protein translocation machinery. Our results identify Sec62 as a critical molecular component in maintenance and recovery of ER homeostasis.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Animales , Autofagia , Homeostasis , Humanos , Ratones , Chaperonas Moleculares/metabolismo , Biosíntesis de Proteínas/fisiología , Transporte de Proteínas/fisiología , Respuesta de Proteína Desplegada/fisiología
14.
Biol Proced Online ; 7: 136-43, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-19565310

RESUMEN

Efficient protein folding and quality control are essential for unperturbed cell viability. Defects in these processes may lead to production of aberrant polypeptides that are either degraded leading to "loss-of-function" phenotypes, or deposited in or outside cells leading to "gain-of-toxic-function" phenotypes. Elucidation of molecular mechanisms regulating folding and quality control of newly synthesized polypeptides is therefore of greatest interest. Here we describe protocols for metabolic labelling of transfected/infected mammalian cells with [(35)S]-methionine and [(35)S]-cysteine, for immunoisolation from detergent extracts of the selected model proteins and for the investigation of the model polypeptide's intracellular fate in response to chaperone-deletions or to cell exposure to folding or degradation inhibitors.

15.
Mol Biol Cell ; 26(8): 1532-42, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25694454

RESUMEN

Only native polypeptides are released from the endoplasmic reticulum (ER) to be transported at the site of activity. Persistently misfolded proteins are retained and eventually selected for ER-associated degradation (ERAD). The paradox of a structure-based protein quality control is that functional polypeptides may be destroyed if they are architecturally unfit. This has health-threatening implications, as shown by the numerous "loss-of-function" proteopathies, but also offers chances to intervene pharmacologically to promote bypassing of the quality control inspection and export of the mutant, yet functional protein. Here we challenged the ER of human cells with four modular glycopolypeptides designed to alert luminal and membrane protein quality checkpoints. Our analysis reveals the unexpected collaboration of the cytosolic AAA-ATPase p97 and the luminal quality control factor UDP-glucose:glycoprotein glucosyltransferase (UGGT1) in a novel, BiP- and CNX-independent checkpoint. This prevents Golgi transport of a chimera with a native ectodomain that passes the luminal quality control scrutiny but displays an intramembrane defect. Given that human proteopathies may result from impaired transport of functional polypeptides with minor structural defects, identification of quality checkpoints and treatments to bypass them as shown here upon silencing or pharmacologic inhibition of UGGT1 or p97 may have important clinical implications.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Degradación Asociada con el Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Glucosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Calnexina/metabolismo , Chaperón BiP del Retículo Endoplásmico , Células HEK293 , Proteínas de Choque Térmico/metabolismo , Humanos , Estructura Terciaria de Proteína
16.
PLoS One ; 6(1): e16304, 2011 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-21298103

RESUMEN

Malectin is a conserved, endoplasmic reticulum (ER)-resident lectin that recognizes high mannose oligosaccharides displaying terminal glucose residues. Here we show that Malectin is an ER stress-induced protein that selectively associates with glycopolypeptides without affecting their entry and their retention in the Calnexin chaperone system. Analysis of the obligate Calnexin client influenza virus hemagglutinin (HA) revealed that Calnexin and Malectin associated with different timing to different HA conformers and that Malectin associated with misfolded HA. Analysis of the facultative Calnexin clients NHK and α1-antitrypsin (α1AT) revealed that induction of Malectin expression to simulate conditions of ER stress resulted in persistent association between the ER lectin and the model cargo glycoproteins, interfered with processing of cargo-linked oligosaccharides and reduced cargo secretion. We propose that Malectin intervention is activated upon ER stress to inhibit secretion of defective gene products that might be generated under conditions of aberrant functioning of the ER quality control machinery.


Asunto(s)
Retículo Endoplásmico/metabolismo , Lectinas/metabolismo , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Animales , Calnexina , Línea Celular , Cricetinae , Cricetulus , Glicoproteínas/metabolismo , Humanos , Lectinas/química , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Deficiencias en la Proteostasis/prevención & control
18.
PLoS One ; 5(9)2010 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-20927389

RESUMEN

Peptidyl-prolyl cis/trans isomerases (PPIs) catalyze cis/trans isomerization of peptide bonds preceding proline residues. The involvement of PPI family members in protein refolding has been established in test tube experiments. Surprisingly, however, no data is available on the involvement of endoplasmic reticulum (ER)-resident members of the PPI family in protein folding, quality control or disposal in the living cell. Here we report that the immunosuppressive drug cyclosporine A (CsA) selectively inhibits the degradation of a subset of misfolded proteins generated in the ER. We identify cyclophilin B (CyPB) as the ER-resident target of CsA that catalytically enhances disposal from the ER of ERAD-L(S) substrates containing cis proline residues. Our manuscript presents the first evidence for enzymatic involvement of a PPI in protein quality control in the ER of living cells.


Asunto(s)
Ciclofilinas/metabolismo , Ciclosporina/farmacología , Retículo Endoplásmico/enzimología , Ciclofilinas/química , Regulación hacia Abajo , Retículo Endoplásmico/química , Retículo Endoplásmico/efectos de los fármacos , Células HeLa , Humanos , Pliegue de Proteína
19.
Mol Cell ; 27(2): 238-249, 2007 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-17643373

RESUMEN

Newly synthesized glycoproteins displaying monoglucosylated N-glycans bind to the endoplasmic reticulum (ER) chaperone calnexin, and their maturation is catalyzed by the calnexin-associated oxidoreductase ERp57. Folding substrates are eventually released from calnexin, and terminal glucoses are removed from N-glycans. The UDP-glucose:glycoprotein glucosyltransferase (UGT1, UGGT, GT) monitors the folding state of polypeptides released from calnexin and adds back a glucose residue on N-glycans of nonnative polypeptides, thereby prolonging retention in the calnexin chaperone system for additional folding attempts. Here we show that for certain newly synthesized glycoproteins UGT1 deletion has no effect on binding to calnexin. These proteins must normally complete their folding program in one binding event. Other proteins normally undergo multiple binding events, and UGT1 deletion results in their premature release from calnexin. For other proteins, UGT1 deletion substantially delays release from calnexin, unexpectedly showing that UGT1 activity might be required for a structural maturation needed for substrate dissociation from calnexin and export from the ER.


Asunto(s)
Calnexina/metabolismo , Glucuronosiltransferasa/metabolismo , Animales , Secuencia de Bases , Transporte Biológico Activo , Células Cultivadas , Cartilla de ADN/genética , Retículo Endoplásmico/metabolismo , Glucuronosiltransferasa/deficiencia , Glucuronosiltransferasa/genética , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicosilación , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Técnicas In Vitro , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Ratones , Unión Proteica , Pliegue de Proteína , Especificidad por Sustrato , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo
20.
J Biol Chem ; 281(10): 6219-26, 2006 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-16407314

RESUMEN

Members of the protein-disulfide isomerase superfamily catalyze the formation of intra- and intermolecular disulfide bonds, a rate-limiting step of protein folding in the endoplasmic reticulum (ER). Here we compared maturation of one obligate and two facultative calnexin substrates in cells with and without ERp57, the calnexin-associated, glycoprotein-specific oxidoreductase. ERp57 deletion did not prevent the formation of disulfide bonds during co-translational translocation of nascent glycopolypeptides in the ER. It affected, however, the post-translational phases of oxidative influenza virus hemagglutinin (HA) folding, resulting in significant loss of folding efficiency for this obligate calnexin substrate. Without ERp57, HA also showed reduced capacity to recover from an artificially induced aberrant conformation, thus revealing a crucial role of ERp57 during post-translational reshuffling to the native set of HA disulfides. ERp57 deletion did not affect maturation of the model facultative calnexin substrates E1 and p62 (and of most cellular proteins, as shown by lack of induction of ER stress). ERp72 was identified as one of the ER-resident oxidoreductases associating with the orphan ERp57 substrates to maintain their folding competence.


Asunto(s)
Calnexina/química , Calnexina/fisiología , Retículo Endoplásmico/metabolismo , Proteínas de Choque Térmico/deficiencia , Proteínas de Choque Térmico/genética , Hemaglutininas/metabolismo , Proteína Disulfuro Isomerasas/deficiencia , Proteína Disulfuro Isomerasas/genética , Pliegue de Proteína , Eliminación de Secuencia , Animales , Calnexina/metabolismo , Línea Celular , Línea Celular Transformada , Cistina/genética , Cistina/metabolismo , Retículo Endoplásmico/química , Retículo Endoplásmico/enzimología , Hemaglutininas/genética , Glicoproteínas de Membrana/fisiología , Ratones , Ratones Noqueados , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA