Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Microbiol ; 16(2): 161-78, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24119191

RESUMEN

The giant non-fimbrial adhesin SiiE is essential to establish intimate contact between Salmonella enterica and the apical surface of polarized epithelial cells. SiiE is secreted by a type I secretion system (T1SS) encoded by Salmonella Pathogenicity Island 4 (SPI4). We identified SiiA and SiiB as two regulatory proteins encoded by SPI4. Mutant strains in siiA or siiB still secrete SiiE, but are highly reduced in adhesion to, and invasion of polarized cells. SiiA and SiiB are inner membrane proteins with one and three transmembrane (TM) helices respectively. TM2 and TM3 of SiiB are similar to members of the ExbB/TolQ family, while the TM of SiiA is similar to MotB and a conserved aspartate residue in this TM is essential for SPI4-encoded T1SS function. Co-immunoprecipitation, bacterial two-hybrid and FRET demonstrate homo- and heterotypic protein interactions for SiiA and SiiB. SiiB, but not SiiA also interacts with the SPI4-T1SS ATPase SiiF. The integrity of the Walker A box in SiiF was required for SiiB-SiiF interactionand SiiF dimer formation. Based on these data, we describe SiiA and SiiB as new, exclusively virulence-associated members of the Mot/Exb/Tol family of membrane proteins. Both proteins are involved in a novel mechanism of controlling SPI4-T1SS-dependent adhesion, most likely by formation of a proton-conducting channel.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos , Regulación Bacteriana de la Expresión Génica , Salmonella typhimurium/metabolismo , Factores de Transcripción/metabolismo , Adhesión Bacteriana , Proteínas Bacterianas/genética , Células Epiteliales/microbiología , Eliminación de Gen , Humanos , Inmunoprecipitación , Mapeo de Interacción de Proteínas , Subunidades de Proteína/metabolismo , Salmonella typhimurium/genética , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos , Factores de Virulencia/metabolismo
2.
Traffic ; 12(5): 563-78, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21255212

RESUMEN

Signal recognition particle (SRP)-dependent protein targeting is a universally conserved process that delivers proteins to the bacterial cytoplasmic membrane or to the endoplasmic reticulum membrane in eukaryotes. Crucial during targeting is the transfer of the ribosome-nascent chain complex (RNC) from SRP to the Sec translocon. In eukaryotes, this step is co-ordinated by the SRß subunit of the SRP receptor (SR), which probably senses a vacant translocon by direct interaction with the translocon. Bacteria lack the SRß subunit and how they co-ordinate RNC transfer is unknown. By site-directed cross-linking and fluorescence resonance energy transfer (FRET) analyses, we show that FtsY, the bacterial SRα homologue, binds to the exposed C4/C5 loops of SecY, the central component of the bacterial Sec translocon. The same loops serve also as binding sites for SecA and the ribosome. The FtsY-SecY interaction involves at least the A domain of FtsY, which attributes an important function to this so far ill-defined domain. Binding of FtsY to SecY residues, which are also used by SecA and the ribosome, probably allows FtsY to sense an available translocon and to align the incoming SRP-RNC with the protein conducting channel. Thus, the Escherichia coli FtsY encompasses the functions of both the eukaryotic SRα and SRß subunits in one single protein.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Proteínas de Escherichia coli/química , Proteínas de Transporte de Membrana/química , Receptores Citoplasmáticos y Nucleares/química , Receptores de Péptidos/química , Ribosomas/química , Partícula de Reconocimiento de Señal/química , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Escherichia coli/citología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Espectrometría de Masas , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Ribosomas/metabolismo , Canales de Translocación SEC , Proteína SecA , Partícula de Reconocimiento de Señal/metabolismo
3.
PLoS One ; 8(10): e77708, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24147062

RESUMEN

Microorganisms use multiple two-component sensory systems to detect changes in their environment and elicit physiological responses. Despite their wide spread and importance, the intracellular organization of two-component sensory proteins in bacteria remains little investigated. A notable exception is the well-studied clustering of the chemoreceptor-kinase complexes that mediate chemotaxis behaviour. However, these chemosensory complexes differ fundamentally from other systems, both structurally and functionally. Therefore, studying the organization of typical sensory kinases in bacteria is essential for understanding the general role of receptor clustering in bacterial sensory signalling. Here, by studying mYFP-tagged sensory kinases in Escherichia coli, we show that the tagged TorS and EvgS sensors have a clear tendency for self-association and clustering. These sensors clustered even when expressed at a level of a few hundred copies per cell. Moreover, the mYFP-tagged response regulator TorR showed clear TorS-dependent clustering, indicating that untagged TorS sensors also tend to form clusters. We also provide evidence for the functionality of these tagged sensors. Experiments with truncated TorS or EvgS proteins suggested that clustering of EvgS sensors depends on the cytoplasmic part of the protein, whereas clustering of TorS sensors can be potentially mediated by the periplasmic/transmembrane domain. Overall, these findings support the notion that sensor clustering plays a role in bacterial sensory signalling beyond chemotaxis.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fosfotransferasas/metabolismo , Proteínas Quinasas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Histidina Quinasa , Fosfotransferasas/genética , Proteínas Quinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA