RESUMEN
We present a method that uses viscosity-lowering materials to fabricate flexible polydimethylsiloxane-based quantum dot (QD) films with high quantum yield (QY) and improved uniformity. We found that the aggregation of individual QDs was prevented, and the QY improved simultaneously in films that contained surfactants. These films showed an improved absorption of approximately 27% in the near-UV and blue light regions, along with an improved photoluminescence of approximately 18%, indicating improved light conversion from the UV to the visible frequency region.
RESUMEN
Most semiconductors have surface dynamics radically different from its bulk counterpart due to surface defect, doping level, and symmetry breaking. Because of the technical challenge of direct observation of the surface carrier dynamics, however, experimental studies have been allowed in severely shrunk structures including nanowires, thin films, or quantum wells where the surface-to-volume ratio is very high. Here, we develop a new type of terahertz (THz) nanoprobing system to investigate the surface dynamics of bulk semiconductors, using metallic nanogap accompanying strong THz field confinement. We observed that carrier lifetimes of InP and GaAs dramatically decrease close to the limit of THz time resolution (â¼1 ps) as the gap size decreases down to nanoscale and that they return to their original values once the nanogap patterns are removed. Our THz nanoprobing system will open up pathways toward direct and nondestructive measurements of surface dynamics of bulk semiconductors.
RESUMEN
We demonstrate that high-field terahertz (THz) pulses trigger transient insulator-to-metal transition in a nanoantenna patterned vanadium dioxide thin film. THz transmission of vanadium dioxide instantaneously decreases in the presence of strong THz fields. The transient THz absorption indicates that strong THz fields induce electronic insulator-to-metal transition without causing a structural transformation. The transient phase transition is activated on the subcycle time scale during which the THz pulse drives the electron distribution of vanadium dioxide far from equilibrium and disturb the electron correlation. The strong THz fields lower the activation energy in the insulating phase. The THz-triggered insulator-to-metal transition gives rise to hysteresis loop narrowing, while lowering the transition temperature both for heating and cooling sequences. THz nanoantennas enhance the field-induced phase transition by intensifying the field strength and improve the detection sensitivity via antenna resonance. The experimental results demonstrate a potential that plasmonic nanostructures incorporating vanadium dioxide can be the basis for ultrafast, energy-efficient electronic and photonic devices.
RESUMEN
We directly observed charge separation and a space-charge region in an organic single-crystal p-n heterojunction nanowire, by means of scanning photocurrent microscopy. The axial p-n heterojunction nanowire had a well-defined planar junction, consisted of P3HT (p-type) and C60 (n-type) single crystals and was fabricated by means of the recently developed inkjet-assisted nanotransfer printing technique. The depletion region formed at the p-n junction was directly observed by exploring the spatial distribution of photogenerated carriers along the heterojunction nanowire under various applied bias voltages. Our study provides a facile approach toward the precise characterization of charge transport in organic heterojunction systems as well as the design of efficient nanoscale organic optoelectronic devices.
RESUMEN
In the present study, we visualize ultrafast carrier dynamics in one-dimensional nanoscale devices, such as Si nanowire and carbon nanotube transistors using femtosecond photocurrent microscopy. We investigate transit times of ultrashort carriers that are generated near one metallic electrode and subsequently transported toward the opposite electrode based on drift and diffusion motions. Conversely, pure diffusion motion is observed when the pump pulse is located in the middle of the nanowires. Carrier dynamics have been addressed for various working conditions, in which we found that the carrier velocity and pulse width can be manipulated by the external electrodes. In particular, the carrier velocities extracted from transit times increase for a larger negative gate bias because of the increased field strength at the Schottky barrier.