Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Methods ; 97: 88-93, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26500145

RESUMEN

Exosomes are small (50-100 nm in diameter) vesicles secreted from various mammalian cells. Exosomes have been correlated with tumor antigens and anti-tumor immune responses and may represent cancer biomarkers. Herein, we report on the development of an aptamer-based electrochemical biosensor for quantitative detection of exosomes. Aptamers specific to exosome transmembrane protein CD63 were immobilized onto gold electrode surfaces and incorporated into a microfluidic system. Probing strands pre-labeled with redox moieties were hybridized onto aptamer molecules anchored on the electrode surface. In the presence of exosomes these beacons released probing strands with redox reporters causing electrochemical signal to decrease. These biosensors could be used to detect as few as 1×10(6) particles/mL of exosomes, which represents 100-fold decrease in the limit of detection compared to commercial immunoassays relying on anti-CD63 antibodies. Given the importance of exosome-mediated signal transmission among cells, our study may represent an important step towards development of a simple biosensor that detects exosomes without washing or labeling steps in complex media.


Asunto(s)
Aptámeros de Nucleótidos/química , Exosomas/química , Técnicas Electroquímicas , Células Hep G2 , Humanos , Unión Proteica , Sensibilidad y Especificidad , Resonancia por Plasmón de Superficie , Tetraspanina 30/química
2.
Annu Rev Biomed Eng ; 17: 165-90, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26274599

RESUMEN

Biosensors first appeared several decades ago to address the need for monitoring physiological parameters such as oxygen or glucose in biological fluids such as blood. More recently, a new wave of biosensors has emerged in order to provide more nuanced and granular information about the composition and function of living cells. Such biosensors exist at the confluence of technology and medicine and often strive to connect cell phenotype or function to physiological or pathophysiological processes. Our review aims to describe some of the key technological aspects of biosensors being developed for cell analysis. The technological aspects covered in our review include biorecognition elements used for biosensor construction, methods for integrating cells with biosensors, approaches to single-cell analysis, and the use of nanostructured biosensors for cell analysis. Our hope is that the spectrum of possibilities for cell analysis described in this review may pique the interest of biomedical scientists and engineers and may spur new collaborations in the area of using biosensors for cell analysis.


Asunto(s)
Técnicas Biosensibles/métodos , Análisis de la Célula Individual/métodos , Animales , Anticuerpos , Aptámeros de Nucleótidos , Técnicas Biosensibles/instrumentación , Humanos , Dispositivos Laboratorio en un Chip , Miniaturización , Nanotecnología , Sondas de Ácido Nucleico , Análisis de la Célula Individual/instrumentación , Resonancia por Plasmón de Superficie
3.
Lab Chip ; 15(24): 4614-24, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26542093

RESUMEN

Targeted cancer therapies are designed to deactivate signaling pathways used by cancer cells for survival. However, cancer cells are often able to adapt by activating alternative survival pathways, thereby acquiring drug resistance. An emerging theory is that autocrine or paracrine growth factor signaling in the cancer microenvironment represent an important mechanism of drug resistance. In the present study we wanted to examine whether paracrine interactions between groups of melanoma cells result in resistance to vemurafenib - an FDA approved drug targeting the BRAF mutation in metastatic melanoma. We used a vemurafenib-resistant melanoma model which secretes fibroblast growth factor (FGF)-2 to test our hypothesis that this is a key paracrine mediator of resistance to vemurafenib. Sensitive cells treated with media conditioned by resistant cells did not protect from the effects of vemurafenib. To query paracrine interactions further we fabricated a microfluidic co-culture device with two parallel compartments, separated by a 100 µm wide hydrogel barrier. The gel barrier prevented resorting/contact of cells while permitting paracrine cross-talk. In this microfluidic system, sensitive cells did become refractive to the effects of vemurafenib when cultured adjacent to resistant cells. Importantly, incorporation of FGF-2 capture probes into the gel barrier separating the two cell types prevented onset of resistance to vemurafenib. Microfluidic tools described here allow for more sensitive analysis of paracrine signals, may help better understand signaling in the cancer microenvironment and may enable development of more effective cancer therapies.


Asunto(s)
Técnicas de Cocultivo/instrumentación , Resistencia a Antineoplásicos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Técnicas Analíticas Microfluídicas/instrumentación , Comunicación Paracrina/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Diseño de Equipo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Humanos , Indoles/farmacología , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Sulfonamidas/farmacología , Vemurafenib
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA