RESUMEN
Strychnine is a natural product that, through isolation, structural elucidation and synthetic efforts, shaped the field of organic chemistry. Currently, strychnine is used as a pesticide to control rodents1 because of its potent neurotoxicity2,3. The polycyclic architecture of strychnine has inspired chemists to develop new synthetic transformations and strategies to access this molecular scaffold4, yet it is still unknown how plants create this complex structure. Here we report the biosynthetic pathway of strychnine, along with the related molecules brucine and diaboline. Moreover, we successfully recapitulate strychnine, brucine and diaboline biosynthesis in Nicotiana benthamiana from an upstream intermediate, thus demonstrating that this complex, pharmacologically active class of compounds can now be harnessed through metabolic engineering approaches.
Asunto(s)
Vías Biosintéticas , Ingeniería Metabólica , Estricnina , Vías Biosintéticas/genética , Estricnina/análogos & derivados , Estricnina/biosíntesis , Estricnina/química , Nicotiana/química , Nicotiana/genética , Nicotiana/metabolismoRESUMEN
Steroidal glycoalkaloids (SGAs) are specialized metabolites produced by hundreds of Solanum species including food crops, such as tomato, potato and eggplant. Unlike true alkaloids, nitrogen is introduced at a late stage of SGA biosynthesis through an unknown transamination reaction. Here, we reveal the mechanism by which GLYCOALKALOID METABOLISM12 (GAME12) directs the biosynthesis of nitrogen-containing steroidal alkaloid aglycone in Solanum. We report that GAME12, a neofunctionalized γ-aminobutyric acid (GABA) transaminase, undergoes changes in both active site specificity and subcellular localization to switch from its renown and generic activity in core metabolism to function in a specialized metabolic pathway. Moreover, overexpression of GAME12 alone in engineered S. nigrum leaves is sufficient for de novo production of nitrogen-containing SGAs. Our results highlight how hijacking a core metabolism GABA shunt enzyme is crucial in numerous Solanum species for incorporating a nitrogen to a steroidal-specialized metabolite backbone and form defensive alkaloids.
RESUMEN
Nature uses cycloaddition reactions to generate complex natural product scaffolds. Dehydrosecodine is a highly reactive biosynthetic intermediate that undergoes cycloaddition to generate several alkaloid scaffolds that are the precursors to pharmacologically important compounds such as vinblastine and ibogaine. Here we report how dehydrosecodine can be subjected to redox chemistry, which in turn allows cycloaddition reactions with alternative regioselectivity. By incubating dehydrosecodine with reductase and oxidase biosynthetic enzymes that act upstream in the pathway, we can access the rare pseudoaspidosperma alkaloids pseudo-tabersonine and pseudo-vincadifformine, both in vitro and by reconstitution in the plant Nicotiana benthamiana from an upstream intermediate. We propose a stepwise mechanism to explain the formation of the pseudo-tabersonine scaffold by structurally characterizing enzyme intermediates and by monitoring the incorporation of deuterium labels. This discovery highlights how plants use redox enzymes to enantioselectively generate new scaffolds from common precursors.
Asunto(s)
Alcaloides , Aspidosperma , Reacción de Cicloadición , Oxidación-Reducción , ReciclajeRESUMEN
MAIN CONCLUSION: Using virus-induced gene silencing, we demonstrated that the enzymes GES, ISY, and MLPL are responsible for nepetalactone biosynthesis in Nepeta cataria. Nepetalactone is the main iridoid that is found in the Nepeta genus and is well-known for its psychoactive effect on house cats. Moreover, there is a burgeoning interest into the effect of nepetalactone on insects. Although the enzymes for nepetalactone biosynthesis have been biochemically assayed in vitro, validation of the role that these enzymes have in planta has not been demonstrated. Virus-induced gene silencing (VIGS) is a silencing method that relies on transient transformation and is an approach that has been particularly successful when applied to a variety of non-model plants. Here, we use a recently designed visual-marker dependent VIGS system to demonstrate that the nepetalactone biosynthetic enzymes GES, ISY, and MLPL impact nepetalactone biosynthesis in Nepeta cataria.
Asunto(s)
Nepeta , Monoterpenos Ciclopentánicos , Iridoides , Nepeta/química , Nepeta/genética , Pironas/química , Pironas/farmacologíaRESUMEN
Solanum steroidal glycoalkaloids (SGAs) are renowned defence metabolites exhibiting spectacular structural diversity. Genes and enzymes generating the SGA precursor pathway, SGA scaffold and glycosylated forms have been largely identified. Yet, the majority of downstream metabolic steps creating the vast repertoire of SGAs remain untapped. Here, we discovered that members of the 2-OXOGLUTARATE-DEPENDENT DIOXYGENASE (2-ODD) family play a prominent role in SGA metabolism, carrying out three distinct backbone-modifying oxidative steps in addition to the three formerly reported pathway reactions. The GLYCOALKALOID METABOLISM34 (GAME34) enzyme catalyses the conversion of core SGAs to habrochaitosides in wild tomato S. habrochaites. Cultivated tomato plants overexpressing GAME34 ectopically accumulate habrochaitosides. These habrochaitoside enriched plants extracts potently inhibit Puccinia spp. spore germination, a significant Solanaceae crops fungal pathogen. Another 2-ODD enzyme, GAME33, acts as a desaturase (via hydroxylation and E/F ring rearrangement) forming unique, yet unreported SGAs. Conversion of bitter α-tomatine to ripe fruit, nonbitter SGAs (e.g. esculeoside A) requires two hydroxylations; while the known GAME31 2-ODD enzyme catalyses hydroxytomatine formation, we find that GAME40 catalyses the penultimate step in the pathway and generates acetoxy-hydroxytomatine towards esculeosides accumulation. Our results highlight the significant contribution of 2-ODD enzymes to the remarkable structural diversity found in plant steroidal specialized metabolism.
Asunto(s)
Alcaloides , Dioxigenasas , Solanum lycopersicum , Solanum tuberosum , Solanum , Alcaloides/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Ácidos Cetoglutáricos/metabolismo , Solanum lycopersicum/genética , Solanum/genética , Solanum/metabolismo , Solanum tuberosum/genéticaRESUMEN
Steroidal glycoalkaloids (SGAs) are protective metabolites constitutively produced by Solanaceae species. Genes and enzymes generating the vast structural diversity of SGAs have been largely identified. Yet, mechanisms of hormone pathways coordinating defence (jasmonate; JA) and growth (gibberellin; GA) controlling SGAs metabolism remain unclear. We used tomato to decipher the hormonal regulation of SGAs metabolism during growth vs defence tradeoff. This was performed by genetic and biochemical characterisation of different JA and GA pathways components, coupled with in vitro experiments to elucidate the crosstalk between these hormone pathways mediating SGAs metabolism. We discovered that reduced active JA results in decreased SGA production, while low levels of GA or its receptor led to elevated SGA accumulation. We showed that MYC1 and MYC2 transcription factors mediate the JA/GA crosstalk by transcriptional activation of SGA biosynthesis and GA catabolism genes. Furthermore, MYC1 and MYC2 transcriptionally regulate the GA signalling suppressor DELLA that by itself interferes in JA-mediated SGA control by modulating MYC activity through protein-protein interaction. Chemical and fungal pathogen treatments reinforced the concept of JA/GA crosstalk during SGA metabolism. These findings revealed the mechanism of JA/GA interplay in SGA biosynthesis to balance the cost of chemical defence with growth.
Asunto(s)
Alcaloides , Solanum lycopersicum , Alcaloides/metabolismo , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Solanum lycopersicum/metabolismo , Oxilipinas/metabolismoRESUMEN
Glycosylation is one of the most prevalent molecular modifications in nature. Single or multiple sugars can decorate a wide range of acceptors from proteins to lipids, cell wall glycans and small molecules, dramatically affecting their activity. Here, we discovered that by 'hijacking' an enzyme of the cellulose synthesis machinery involved in cell wall assembly, plants evolved cellulose synthase-like enzymes (Csls) and acquired the capacity to glucuronidate specialized metabolites, that is, triterpenoid saponins. Apparently, endoplasmic reticulum-membrane localization of Csls and of other pathway proteins was part of evolving a new glycosyltransferase function, as plant metabolite glycosyltransferases typically act in the cytosol. Discovery of glucuronic acid transferases across several plant orders uncovered the long-pursued enzymatic reaction in the production of a low-calorie sweetener from licorice roots. Our work opens the way for engineering potent saponins through microbial fermentation and plant-based systems.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Glicosiltransferasas/genética , Proteínas de Plantas/genética , Saponinas/biosíntesis , Spinacia oleracea/metabolismo , Terpenos/metabolismo , Beta vulgaris/genética , Beta vulgaris/metabolismo , Membrana Celular/metabolismo , Pared Celular/metabolismo , Celulosa/metabolismo , Retículo Endoplásmico/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Glucosiltransferasas/metabolismo , Ácido Glucurónico/metabolismo , Glicosilación , Glicosiltransferasas/metabolismo , Glycyrrhiza/genética , Glycyrrhiza/metabolismo , Células Vegetales/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Spinacia oleracea/genéticaRESUMEN
Thousands of specialized, steroidal metabolites are found in a wide spectrum of plants. These include the steroidal glycoalkaloids (SGAs), produced primarily by most species of the genus Solanum, and metabolites belonging to the steroidal saponins class that are widespread throughout the plant kingdom. SGAs play a protective role in plants and have potent activity in mammals, including antinutritional effects in humans. The presence or absence of the double bond at the C-5,6 position (unsaturated and saturated, respectively) creates vast structural diversity within this metabolite class and determines the degree of SGA toxicity. For many years, the elimination of the double bond from unsaturated SGAs was presumed to occur through a single hydrogenation step. In contrast to this prior assumption, here, we show that the tomato GLYCOALKALOID METABOLISM25 (GAME25), a short-chain dehydrogenase/reductase, catalyzes the first of three prospective reactions required to reduce the C-5,6 double bond in dehydrotomatidine to form tomatidine. The recombinant GAME25 enzyme displayed 3ß-hydroxysteroid dehydrogenase/Δ5,4 isomerase activity not only on diverse steroidal alkaloid aglycone substrates but also on steroidal saponin aglycones. Notably, GAME25 down-regulation rerouted the entire tomato SGA repertoire toward the dehydro-SGAs branch rather than forming the typically abundant saturated α-tomatine derivatives. Overexpressing the tomato GAME25 in the tomato plant resulted in significant accumulation of α-tomatine in ripe fruit, while heterologous expression in cultivated eggplant generated saturated SGAs and atypical saturated steroidal saponin glycosides. This study demonstrates how a single scaffold modification of steroidal metabolites in plants results in extensive structural diversity and modulation of product toxicity.
Asunto(s)
Alcaloides/biosíntesis , Saponinas/biosíntesis , Solanaceae/química , Alcaloides/química , Regulación de la Expresión Génica de las Plantas/genética , Glicósidos/biosíntesis , Glicósidos/química , Solanum lycopersicum/enzimología , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Oxidorreductasas/metabolismo , Extractos Vegetales/química , Plantas Modificadas Genéticamente/metabolismo , Saponinas/química , Saponinas/metabolismo , Solanaceae/metabolismo , Esteroides/química , Tomatina/análogos & derivados , Tomatina/metabolismoRESUMEN
Understanding when and where metabolites accumulate provides important cues to the gene function. Mass spectrometry imaging (MSI) enables in situ temporal and spatial measurement of a large assortment of metabolites, providing mapping information regarding their cellular distribution. To describe the current state and technical advances using MSI in plant sciences, we employed MSI to demonstrate its significant contribution to the study of plant specialised metabolism. We show that coupling MSI with: (1) RNA interference (RNAi), (2) virus induced gene silencing (VIGS), (3) agroinfiltration or (4) samples derived from plant natural variation provides great opportunities to understand the accurate gene-metabolite relationship and discover novel gene-associated metabolites. This was exemplified in three plant species (i.e. tomato, tobacco and wheat) by mapping the distribution of metabolites possessing a range of polarities. In particular, we demonstrated that MSI is able to spatially map an entire metabolic pathway, including intermediates and final products, in the intricate biosynthetic route to tomato fruit steroidal glycoalkaloids. We therefore envisage MSI as a key component of the metabolome analysis arsenal employed in plant gene discovery strategies.
Asunto(s)
Genes de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Espectrometría de Masas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Nicotiana/genética , TriticumRESUMEN
This work used an approach of enzyme engineering towards the improved production of baicalin as well as alteration of acceptor and donor substrate preferences in UGT73A16. The 3D model of Withania somnifera family-1 glycosyltransferase (UGT73A16) was constructed based on the known crystal structures of plant UGTs. Structural and functional properties of UGT73A16 were investigated using docking and mutagenesis. The docking studies were performed to understand the key residues involved in substrate recognition. In the molecular model of UGT73A16, substrates binding pockets are located between N- and C-terminal domains. Modeled UGT73A16 was docked with UDP-glucose, UDP-glucuronic acid (UDPGA), kaempferol, isorhamnetin, 3-hydroxy flavones, naringenin, genistein and baicalein. The protein-ligand interactions showed that His 16, Asp 246, Lys 255, Ala 337, Gln 339, Val 340, Asn 358 and Glu 362 amino acid residues may be important for catalytic activity. The kinetic parameters indicated that mutants A337C and Q339A exhibited 2-3 fold and 6-7 fold more catalytic efficiency, respectively than wild type, and shifted the sugar donor specificity from UDP-glucose to UDPGA. The mutant Q379H displayed large loss of activity with UDP-glucose and UDPGA strongly suggested that last amino acid residue of PSPG box is important for glucuronosylation and glucosylation and highly specific to sugar binding sites. The information obtained from docking and mutational studies could be beneficial in future to engineer this biocatalyst for development of better ones.
Asunto(s)
Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Mutagénesis , Withania/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Flavonoides , Cinética , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Conformación Proteica , Alineación de Secuencia , Análisis de Secuencia , Homología de Secuencia de AminoácidoRESUMEN
Fluorescence quenching and time resolved fluorescence studies of wild type recombinant cinnamoyl CoA reductase (Ll-CCRH1), a multitryptophan protein from Leucaena leucocephala and 10 different active site mutants were carried out to investigate tryptophan environment. The enzyme showed highest affinity for feruloyl CoA (K(a) = 3.72 × 10(5) M(-1)) over other CoA esters and cinnamaldehydes, as determined by fluorescence spectroscopy. Quenching of the fluorescence by acrylamide for wild type and active site mutants was collisional with almost 100% of the tryptophan fluorescence accessible under native condition and remained same after denaturation of protein with 6 M GdnHCl. In wild type Ll-CCRH1, the extent of quenching achieved with iodide (f(a) = 1.0) was significantly higher than cesium ions (f(a) = 0.33) suggesting more density of positive charge around surface of trp conformers under native conditions. Denaturation of wild type protein with 6 M GdnHCl led to significant increase in the quenching with cesium (f(a) = 0.54), whereas quenching with iodide ion was decreased (f(a) = 0.78), indicating reorientation of charge density around trp from positive to negative and heterogeneity in trp environment. The Stern-Volmer plots for wild type and mutants Ll-CCRH1 under native and denatured conditions, with cesium ion yielded biphasic quenching profiles. The extent of quenching for cesium and iodide ions under native and denatured conditions observed in active site mutants was significantly different from wild type Ll-CCRH1 under the same conditions. Thus, single substitution type mutations of active site residues showed heterogeneity in tryptophan microenvironment and differential degree of conformation of protein under native or denatured conditions.
Asunto(s)
Aldehído Oxidorreductasas/química , Fabaceae/enzimología , Fluorescencia , Mutación/genética , Acrilamida/química , Acrilamida/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Dominio Catalítico , Cesio/química , Cesio/metabolismo , Cinética , Mutagénesis Sitio-Dirigida , Unión Proteica , Conformación Proteica , Desnaturalización Proteica , Espectrometría de FluorescenciaRESUMEN
Antimalarial drugs are being encapsulated in nanotechnology-based carriers because there are not enough new treatment options and people are becoming more resistant to the ones that are already available. This approach uses two or more biochemical targets of malarial parasites. The codelivery of artemether and lumefantrine (AL) combines the synergistic effect of artemether for an early onset of action followed by the prolonged effect of lumefantrine. The bioavailability of artemether and lumefantrine is low due to their low solubility. Thus, an alternative lipidic formulation, namely nanocochleate, was developed for the selected drugs by adding calcium ions into preformed nanoliposomes (AL-loaded liposomes). Using phospholipon 90H and cholesterol, a thin-film hydration method produced drug-loaded liposomes. The synthesized AL-loaded liposomes were further incorporated into nanocochleates. The formulations were evaluated for in vitro and in vivo parameters. Nanocochleates had a particle size of 200.7 nm, a zeta potential of -9.4 mV, and an entrapment efficiency of 73.12% ± 1.82% and 61.46% ± 0.78%, respectively, for artemether and lumefantrine. Whereas liposomes had a particle size of 210 nm and an entrapment efficiency of 67.34% ± 1.52% and 53.24% ± 0.78%, respectively, for artemether and lumefantrine. An X-ray diffraction study confirmed the amorphous state of artemether and lumefantrine in liposomes and nanocochleate. Nanocochleate showed a controlled release profile for loaded drugs. When compared with free drugs, nanocochleate showed low tissue distribution and a 20-fold increase in bioavailability in rats. Thus, nanocochleate offers an interesting alternative to an existing dosage form for the treatment of malaria.
Asunto(s)
Antimaláricos , Malaria , Humanos , Ratas , Animales , Lumefantrina/uso terapéutico , Arteméter/uso terapéutico , Liposomas , Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico , Malaria/parasitología , Combinación Arteméter y Lumefantrina/uso terapéuticoRESUMEN
Steroidal glycoalkaloids (SGAs) are specialized metabolites produced by hundreds of Solanum species, including important vegetable crops such as tomato, potato, and eggplant. Although it has been known that SGAs play important roles in defense in plants and "anti-nutritional" effects (e.g., toxicity and bitterness) to humans, many of these molecules have documented anti-cancer, anti-microbial, anti-inflammatory, anti-viral, and anti-pyretic activities. Among these, α-solasonine and α-solamargine isolated from black nightshade (Solanum nigrum) are reported to have potent anti-tumor, anti-proliferative, and anti-inflammatory activities. Notably, α-solasonine and α-solamargine, along with the core steroidal aglycone solasodine, are the most widespread SGAs produced among the Solanum plants. However, it is still unknown how plants synthesize these bioactive steroidal molecules. Through comparative metabolomic-transcriptome-guided approach, biosynthetic logic, combinatorial expression in Nicotiana benthamiana, and functional recombinant enzyme assays, here we report the discovery of 12 enzymes from S. nigrum that converts the starting cholesterol precursor to solasodine aglycone, and the downstream α-solasonine, α-solamargine, and malonyl-solamargine SGA products. We further identified six enzymes from cultivated eggplant that catalyze the production of α-solasonine, α-solamargine, and malonyl-solamargine SGAs from solasodine aglycone via glycosylation and atypical malonylation decorations. Our work provides the gene tool box and platform for engineering the production of high-value, steroidal bioactive molecules in heterologous hosts using synthetic biology.
Asunto(s)
Alcaloides , Solanum , Solanum/metabolismo , Alcaloides/biosíntesis , Alcaloides/química , Alcaloides/metabolismo , Alcaloides Solanáceos/biosíntesis , Alcaloides Solanáceos/metabolismo , Alcaloides Solanáceos/química , Esteroides/biosíntesis , Esteroides/metabolismo , Nicotiana/metabolismo , Nicotiana/genética , Solanum nigrum/metabolismo , Solanum nigrum/químicaRESUMEN
Solanaceae plants produce two major classes of valuable sterol derived natural products-steroidal glycoalkaloids and steroidal saponins-from a common cholesterol precursor. Attempts to heterologously produce these molecules have consistently failed, although the genes responsible for each biosynthetic step have been identified. Here we identify a cellulose synthase like protein, an unexpected biosynthetic component that interacts with the early pathway enzymes, enabling steroidal scaffolds production in plants. Moreover, knockout of this gene in black nightshade, Solanum nigrum resulted in plants lacking both steroidal alkaloids and saponins. Unexpectedly, these knockout plants also revealed that steroidal saponins deter serious agricultural insect pests. This discovery provides the missing link to engineer these high value steroidal molecules, and also pinpoints the ecological role for the steroidal saponins.
RESUMEN
Triterpenoid saponins are the class of secondary metabolites, synthesized via isoprenoid pathway. Oxidosqualene cyclases (OSCs) catalyzes the cyclization of 2, 3-oxidosqualene to various triterpene skeletons, the first committed step in triterpenoid biosynthesis. A full-length oxidosqualene cyclase cDNA from Bacopa monniera (BmOSC) was isolated and characterized. The open reading frame (ORF) of BmOSC consists of 2,292 bp, encoding 764 amino acid residues with an apparent molecular mass of 87.62 kDa and theoretical pI 6.21. It contained four QxxxxxW motifs, one Asp-Cys-Thr-Ala-Glu (DCTAE) motif which is highly conserved among the triterpene synthases and another MWCYCR motif involved in the formation of triterpenoid skeletons. The deduced amino acid sequence of BmOSC shares 80.5 % & 71.8 % identity and 89.7 % & 83.5 % similarity with Olea europaea mixed amyrin synthase and Panax notoginseng dammarenediol synthase respectively. Phylogenetic analysis revealed that BmOSC is closely related with other plant OSCs. Quantitative real-time PCR (qRT-PCR) data showed that BmOSC is expressed in all tissues examined with higher expression in stem and leaves as compared to roots and floral parts.
RESUMEN
Vinblastine is a chemotherapy agent produced by the plant Catharanthus roseus in small quantities. Currently, vinblastine is sourced by isolation or semisynthesis. Nicotiana benthamiana is a plant heterologous host that can be used for reconstitution of biosynthetic pathways as an alternative natural product sourcing strategy. Recently, the biosynthesis of the late-stage vinblastine precursors precondylocarpine acetate, catharanthine, and tabersonine have been fully elucidated. However, the large number of enzymes involved in the pathway and the unstable nature of intermediates make the reconstitution of late-stage vinblastine precursor biosynthesis challenging. We used the N. benthamiana chassis and a state-of-art modular vector assembly to optimize the six biosynthetic steps leading to production of precondylocarpine acetate from the central intermediate strictosidine (â¼2.7 mg per 1 g frozen tissue). After selecting the optimal regulatory element combination, we constructed four transcriptional unit assemblies and tested their efficiency. Finally, we successfully reconstituted the biosynthetic steps leading to production of catharanthine and tabersonine.
Asunto(s)
Catharanthus , Vinblastina , Vinblastina/metabolismo , Nicotiana/genética , Alcaloides Indólicos/metabolismo , Catharanthus/genética , Catharanthus/metabolismoRESUMEN
Tomato is the highest value fruit and vegetable crop worldwide, yet produces α-tomatine, a renowned toxic and bitter-tasting anti-nutritional steroidal glycoalkaloid (SGA) involved in plant defense. A suite of modifications during tomato fruit maturation and ripening converts α-tomatine to the non-bitter and less toxic Esculeoside A. This important metabolic shift prevents bitterness and toxicity in ripe tomato fruit. While the enzymes catalyzing glycosylation and hydroxylation reactions in the Esculeoside A pathway have been resolved, the proposed acetylating step remains, to date, elusive. Here, we discovered that GAME36 (GLYCOALKALOID METABOLISM36), a BAHD-type acyltransferase catalyzes SGA-acetylation in cultivated and wild tomatoes. This finding completes the elucidation of the core Esculeoside A biosynthetic pathway in ripe tomato, allowing reconstitution of Esculeoside A production in heterologous microbial and plant hosts. The involvement of GAME36 in bitter SGA detoxification pathway points to a key role in the evolution of sweet-tasting tomato as well as in the domestication and breeding of modern cultivated tomato fruit.