Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Bioorg Med Chem ; 102: 117658, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38460487

RESUMEN

Aurora kinases (AurkA/B/C) regulate the assembly of bipolar mitotic spindles and the fidelity of chromosome segregation during mitosis, and are attractive therapeutic targets for cancers. Numerous ATP-competitive AurkA inhibitors have been developed as potential anti-cancer agents. Recently, a few allosteric inhibitors have been reported that bind to the allosteric Y-pocket within AurkA kinase domain and disrupt the interaction between AurkA and its activator TPX2. Herein we report a novel allosteric AurkA inhibitor (6h) of N-benzylbenzamide backbone. Compound 6h suppressed the both catalytic activity and non-catalytic functions of AurkA. The inhibitory activity of 6h against AurkA (IC50 = 6.50 µM) was comparable to that of the most potent allosteric AurkA inhibitor AurkinA. Docking analysis against the Y-pocket revealed important pharmacophores and interactions that were coherent with structure-activity relationship. In addition, 6h suppressed DNA replication in G1-S phase, which is a feature of allosteric inhibition of AurA. Our current study may provide a useful insight in designing potent allosteric AurkA inhibitors.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Proteínas de Ciclo Celular , Aurora Quinasa A , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Replicación del ADN , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
2.
J Cell Physiol ; 235(12): 10037-10050, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32468675

RESUMEN

Transient receptor potential cation channel subfamily M member 7 (TRPM7) composed of an ion channel and a kinase domain regulates triple-negative breast cancer (TNBC) cell migration, invasion, and metastasis, but it does not modulate TNBC proliferation. However, previous studies have shown that the combination treatment of nonselective TRPM7 channel inhibitors (2-aminoethoxydiphenyl borate and Gd3+ ) with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) increases antiproliferative effects and apoptosis in prostate cancer cells and hepatic stellate cells. We, therefore, investigated the potential role of TRPM7 in proliferation and apoptosis of TNBC cells (MDA-MB-231 and MDA-MB-468 cells) with TRAIL. We demonstrated that suppression of TRPM7 via TRPM7 knockdown or pharmacological inhibition synergistically increases TRAIL-induced antiproliferative effects and apoptosis in TNBC cells. Furthermore, we showed that the synergistic interaction might be associated with TRPM7 channel activities using combination treatments of TRAIL and TRPM7 inhibitors (NS8593 as a TRPM7 channel inhibitor and TG100-115 as a TRPM7 kinase inhibitor). We reveal that downregulation of cellular FLICE-inhibitory protein via inhibition of Ca2+ influx might be involved in the synergistic interaction. Our study would provide both a new role of TRPM7 in TNBC cell apoptosis and a potential combinatorial therapeutic strategy using TRPM7 inhibitors with TRAIL in the treatment of TNBC.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Canales Catiónicos TRPM/genética , Neoplasias de la Mama Triple Negativas/genética , Antineoplásicos/farmacología , Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Células Estrelladas Hepáticas/efectos de los fármacos , Humanos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Canales Catiónicos TRPM/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología
3.
Biochim Biophys Acta Gen Subj ; 1861(4): 947-957, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28161478

RESUMEN

BACKGROUND: Transient receptor potential melastatin 7 (TRPM7) regulates breast cancer cell proliferation, migration, invasion and metastasis in its ion channel- and kinase domain-dependent manner. The pharmacological effects of TRPM7 ion channel inhibitors on breast cancer cells have been studied, but little is known about the effects of TRPM7 kinase domain inhibitors due to lack of potent TRPM7 kinase inhibitors. METHODS: Screening was performed by using TRPM7 kinase assay. Effects of TG100-115 on breast cancer cell proliferation, migration, invasion, myosin IIA phosphorylation, and TRPM7 ion channel activity were assessed by using MTT, wound healing, transwell assay, Western blotting, and patch clamping, respectively. RESULTS: We found that CREB peptide is a potent substrate for the TR-FRET based TRPM7 kinase assay. Using this method, we discovered a new and potent TRPM7 kinase inhibitor, TG100-115. TG100-115 inhibited TRPM7 kinase activity in an ATP competitive fashion with over 70-fold stronger activity than that of rottlerin, known as a TRPM7 kinase inhibitor. TG100-115 has little effect on proliferation of MDA-MB-231 cells, but significantly decreases cell migration and invasion. Moreover, TG100-115 inhibits TRPM7 kinase regulated phosphorylation of the myosin IIA heavy chain and phosphorylation of focal adhesion kinase. TG100-115 also suppressed TRPM7 ion channel activity. CONCLUSIONS: TG100-115 can be used as a potent TRPM7 kinase inhibitor and a potent inhibitor of breast cancer cell migration. GENERAL SIGNIFICANCE: TG100-115 could be a useful tool for studying the pharmacological effects of TRPM7 kinase activity aimed at providing insight into new therapeutic approaches to the treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Invasividad Neoplásica/patología , Fenoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pteridinas/farmacología , Canales Catiónicos TRPM/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Femenino , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Miosina Tipo IIA no Muscular/metabolismo , Fosforilación/efectos de los fármacos
4.
Bioorg Med Chem Lett ; 26(20): 5082-5086, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27599742

RESUMEN

A novel series of arylurea and arylamide derivatives 1a-z, 2a-d having aminoquinazoline scaffold was designed and synthesized. Their in vitro antiproliferative activities against RT112 bladder cancer cell line and inhibitory activities against FGFR3 kinase were tested. Most compounds showed good antiproliferative activities against RT112 bladder cancer cell line, and arylurea compounds 1a-z were more potent than arylamide compounds 2a-d. Among them, eight compounds 1a, 1d-g, 1l, 1y, and 1z showed potent activities with GI50 values below submicromolar range. Especially, arylurea compounds 1d and 1g possessing 2,3-dimethyl and 3,4-dimethyl moieties exhibited superior or similar antiproliferative activity (GI50=8.8nM and 30.2nM, respectively) to AZD4547 (GI50=29.2nM) as a reference standard.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Quinazolinas/síntesis química , Quinazolinas/farmacología , Urea/síntesis química , Urea/farmacología , Neoplasias de la Vejiga Urinaria/patología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Quinazolinas/química , Urea/química
5.
Bioorg Med Chem Lett ; 24(15): 3234-7, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24974340
7.
Bioorg Med Chem Lett ; 23(20): 5515-8, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24012181

RESUMEN

A series of 3,4-diarylpyrrolidin-2-one was designed, prepared and evaluated as triple reuptake inhibitors for antidepressant. Most compounds exhibited comparable in vitro efficacy as norepinephrine and dopamine transporter reuptake inhibitors. Especially, 2i showed better potency than GBR-12909 (IC50=14 nM) which was used as reference compound for dopamine transporter. In addition, 2a and 2b showed inhibition (5.17 µM-85.6 nM) for three transporters.


Asunto(s)
Inhibidores de Captación Adrenérgica/síntesis química , Inhibidores de Captación de Dopamina/síntesis química , Lactamas/química , Pirrolidinonas/síntesis química , Inhibidores Selectivos de la Recaptación de Serotonina/síntesis química , Inhibidores de Captación Adrenérgica/química , Inhibidores de Captación Adrenérgica/metabolismo , Antidepresivos/síntesis química , Antidepresivos/química , Antidepresivos/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Inhibidores de Captación de Dopamina/química , Inhibidores de Captación de Dopamina/metabolismo , Humanos , Lactamas/síntesis química , Lactamas/metabolismo , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Unión Proteica , Pirrolidinonas/química , Pirrolidinonas/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/química , Inhibidores Selectivos de la Recaptación de Serotonina/metabolismo
8.
Eur J Med Chem ; 259: 115592, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37478559

RESUMEN

SbnE is an essential enzyme for staphyloferrin B biosynthesis in Staphylococcus aureus. An earlier study showed that natural product baulamycin A has in vitro inhibitory activity against SbnE and antibacterial potency. A SAR study with analogues of baulamycin A was conducted to identify potent inhibitors of SbnE and/or effective antibiotics against MRSA. The results show that selected analogues, including 11, 18, 21, 24a, 24c, 24m and 24n, exhibit single-digit micromolar inhibitory potencies against SbnE (IC50s = 1.81-8.94 µM) and 11, 24m, 24n possess significant activities against both SbnE (IC50s = 4.12-6.12 µM) and bacteria (MICs = 4-32 µg/mL). Biological investigations revealed that these substances possess potent cell wall disruptive activities and that they inhibit siderophore production in MRSA. Among the selected analogues, 7 has excellent antibiotic activities both gram-positive and -negative bacteria (0.5-4 µg/mL). Moreover, these analogues significantly impede biofilm formation in a concentration-dependent manner. Taken together, the results of the investigation provide valuable insight into the nature of novel baulamycin A analogues that have potential efficacy against MRSA owing to their membrane damaging activity and/or inhibitory efficacy against siderophore production.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Antibacterianos/farmacología , Bacterias , Pruebas de Sensibilidad Microbiana , Sideróforos/farmacología , Staphylococcus aureus
9.
Biomedicines ; 11(10)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37893219

RESUMEN

Monoamine transporters, including dopamine, norepinephrine, and serotonin transporters (DAT, NET, and SERT, respectively), are important therapeutic targets due to their essential roles in the brain. To overcome the slow action of selective monoamine reuptake inhibitors, dual- or triple-acting inhibitors have been developed. Here, to examine whether combination treatments of selective reuptake inhibitors have synergistic effects, the pharmacological properties of DAT, NET, and SERT were investigated using the selective inhibitors of each transporter, which are vanoxerine, nisoxetine, and fluoxetine, respectively. Potencies were determined via fluorescence-based substrate uptake assays in the absence and presence of other inhibitors to test the multi-drug effects on individual transporters, resulting in antagonistic effects on DAT. In detail, fluoxetine resulted in a 1.6-fold increased IC50 value of vanoxerine for DAT, and nisoxetine produced a more drastic increase in the IC50 value by six folds. Furthermore, the effects of different inhibitors, specifically monovalent ions, were tested on DAT inhibition by vanoxerine. Interestingly, these ions also reduced vanoxerine potency in a similar manner. The homology models of DAT suggested a potential secondary inhibitor binding site that affects inhibition in an allosteric manner. These findings imply that the use of combination therapy with monoamine reuptake inhibitors should be approached cautiously, as antagonistic effects may occur.

10.
Aquat Toxicol ; 260: 106573, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37210931

RESUMEN

In this study, we aimed to identify novel compounds that could afford protection against cisplatin-induced ototoxicity by employing both cell- and zebrafish (Danio rerio)-based screening platforms. We screened 923 US Food and Drug Administration-approved drugs to identify potential compounds exhibiting protective effects against cisplatin-induced ototoxicity in HEI-OC1 cells (auditory hair cell line). The screening strategy identified esomeprazole and dexlansoprazole as the primary hit compounds. Subsequently, we examined the effects of these compounds on cell viability and apoptosis. Our results revealed that esomeprazole and dexlansoprazole inhibited organic cation transporter 2 (OCT2), thus providing in vitro evidence that these compounds could ameliorate cisplatin-induced ototoxicity by directly inhibiting OCT2-mediated cisplatin transport. In vivo, the protective effects were validated using zebrafish; esomeprazole was found to decrease cisplatin-induced hair cell damage in neuromasts. Furthermore, the esomeprazole-treated group showed a significantly lower number of TUNEL-positive cells than the cisplatin-treated group. Collectively, our findings revealed that esomeprazole exerts a protective effect against cisplatin-induced hair cell damage in both HEI-OC1 cells and a zebrafish model.


Asunto(s)
Antineoplásicos , Ototoxicidad , Contaminantes Químicos del Agua , Animales , Cisplatino/toxicidad , Antineoplásicos/toxicidad , Pez Cebra/metabolismo , Esomeprazol/farmacología , Dexlansoprazol/farmacología , Línea Celular , Especies Reactivas de Oxígeno/metabolismo , Contaminantes Químicos del Agua/toxicidad , Apoptosis , Supervivencia Celular
11.
Sci Adv ; 9(16): eadf8582, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37083534

RESUMEN

Aurora kinase A (AURKA) performs critical functions in mitosis. Thus, the activity and subcellular localization of AURKA are tightly regulated and depend on diverse factors including interactions with the multiple binding cofactors. How these different cofactors regulate AURKA to elicit different levels of activity at distinct subcellular locations and times is poorly understood. Here, we identified a conserved region of CEP192, the major cofactor of AURKA, that mediates the interaction with AURKA. Quantitative binding studies were performed to map the interactions of a conserved helix (Helix-1) within CEP192. The crystal structure of Helix-1 bound to AURKA revealed a distinct binding site that is different from other cofactor proteins such as TPX2. Inhibiting the interaction between Helix-1 and AURKA in cells led to the mitotic defects, demonstrating the importance of the interaction. Collectively, we revealed a structural basis for the CEP192-mediated AURKA regulation at the centrosome, which is distinct from TPX2-mediated regulation on the spindle microtubule.


Asunto(s)
Aurora Quinasa A , Huso Acromático , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Huso Acromático/metabolismo , Centrosoma/metabolismo , Microtúbulos/metabolismo , Mitosis
12.
Biomed Pharmacother ; 165: 115139, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37454597

RESUMEN

TREK-1 (TWIK-related potassium channel-1) is a subunit of the two-pore domain potassium (K2p) channel and is widely expressed in the brain. TREK-1 knockout mice were shown to have antidepressant-like effects, providing evidence for the channel's potential as a therapeutic target. However, currently there is no good pharmacological inhibitor specifically targeting TREK-1 containing K2p channels that also displays similar antidepressant-like effects. Here, we sought to find selective and potent inhibitors for TREK-1 related dimers both in vitro and in vivo. We synthesized and evaluated 2-hydroxy-3-phenoxypropyl piperidine derivatives yielding a library from which many TREK-1 targeting candidates emerged. Among these, hydroxyl-phenyl- (2a), piperidino- (2g), and pyrrolidino- (2h) piperidinyl substituted compounds showed high potencies to TREK-1 homodimers with significant antidepressant-like effects in forced swim test and tail suspension test. Interestingly, these compounds were found to have high potencies to TWIK-1/TREK-1 heterodimers. Contrastingly, difluoropiperidinyl-4-fluorophenoxy (3e) and 4-hydroxyphenyl-piperidinyl-4-fluorophenoxy (3j) compounds had high potencies to TREK-1 homodimer but lower potency to TWIK-1/TREK-1 heterodimers without significant antidepressant-like effects. We observed positive correlation between inhibition potency to TWIK-1/TREK-1 and immobility time, and no correlation between inhibition potency to TREK-1 homodimer and immobility time. This was consistent with molecular docking simulations of selected compounds to TREK-1 homodimeric and TWIK-1/TREK-1 heterodimeric models. Existing antidepressant fluoxetine was also found to potently inhibit TWIK-1/TREK-1 heterodimers. Our study reveals novel potent TWIK-1/TREK-1 inhibitors 2a, 2g, and 2h as potential antidepressants and suggest that the TWIK-1/TREK-1 heterodimer could be a potential novel molecular therapeutic target for antidepressants.


Asunto(s)
Canales de Potasio de Dominio Poro en Tándem , Ratones , Animales , Simulación del Acoplamiento Molecular , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Encéfalo/metabolismo , Antidepresivos/farmacología , Ratones Noqueados
13.
Biochim Biophys Acta ; 1808(6): 1560-6, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21320466

RESUMEN

The human ether-à-go-go related gene potassium channel is a key player in cardiac rhythm regulation, thus being an important subject for a cardiac toxicity test. Ever since human ether-à-go-go related gene channel inhibition-related cardiac arrest was proven to be fatal, numerous numbers of data on human ether-à-go-go related gene channel inhibition have been piled up. However, there has been no quantitative study on human ether-à-go-go related gene channel inhibition by quaternary ammonium derivatives, well-known potassium channel blockers. Here, we present human ether-à-go-go related gene channel blockade by externally applied quaternary ammonium derivatives using automated whole-cell patch-clamp recordings as well as ab initio quantum calculations. The inhibitory constants and the relative binding energies for human ether-à-go-go related gene channel inhibition were obtained from quaternary ammoniums with systematically varied head and tail groups, indicating that more hydrophobic quaternary ammoniums have higher affinity blockade while cation-π interactions or size effects are not a deterministic factor for human ether-à-go-go related gene channel inhibition by quaternary ammoniums. Further studies on the effect of quaternary ammoniums on human ether-à-go-go related gene channel inactivation implied that hydrophobic quaternary ammoniums either with a longer tail group or with a bigger head group than tetraethylammonium permeate the cell membrane to easily access the high-affinity internal binding site in human ether-à-go-go related gene channel and exert stronger blockade. These results may be informative for the rational drug design to avoid cardiac toxicity.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/fisiología , Bloqueadores de los Canales de Potasio/farmacología , Compuestos de Amonio Cuaternario/farmacología , Animales , Unión Competitiva , Células CHO , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Canales de Potasio Éter-A-Go-Go/genética , Expresión Génica , Humanos , Cinética , Potenciales de la Membrana/efectos de los fármacos , Técnicas de Placa-Clamp , Tetraetilamonio/farmacología , Termodinámica
14.
Cancers (Basel) ; 15(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36612139

RESUMEN

c-KIT is a promising therapeutic target against gastrointestinal stromal tumor (GIST). In order to identify novel c-KIT inhibitors capable of overcoming imatinib resistance, we synthesized 31 novel thiazolo[5,4-b]pyridine derivatives and performed SAR studies. We observed that, among these substances, 6r is capable of inhibiting significantly c-KIT and suppressing substantially proliferation of GIST-T1 cancer cells. It is of note that 6r is potent against a c-KIT V560G/D816V double mutant resistant to imatinib. Compared with sunitinib, 6r possesses higher differential cytotoxicity on c-KIT D816V Ba/F3 cells relative to parental Ba/F3 cells. In addition, kinase panel profiling reveals that 6r has reasonable kinase selectivity. It was found that 6r remarkably attenuates proliferation of cancer cells via blockade of c-KIT downstream signaling, and induction of apoptosis and cell cycle arrest. Furthermore, 6r notably suppresses migration and invasion, as well as anchorage-independent growth of GIST-T1 cells. This study provides useful SAR information for the design of novel c-KIT inhibitors overcoming imatinib-resistance.

15.
Acta Crystallogr D Struct Biol ; 78(Pt 4): 424-434, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35362466

RESUMEN

D-Alanylation of the teichoic acids of the Gram-positive bacterial cell wall plays crucial roles in bacterial physiology and virulence. Deprivation of D-alanine from the teichoic acids of Staphylococcus aureus impairs biofilm and colony formation, induces autolysis and ultimately renders methicillin-resistant S. aureus highly susceptible to antimicrobial agents and host defense peptides. Hence, the D-alanylation pathway has emerged as a promising antibacterial target against drug-resistant S. aureus. D-Alanylation of teichoic acids is mediated via the action of four proteins encoded by the dlt operon, DltABCD, all four of which are essential for the process. In order to develop novel antimicrobial agents against S. aureus, the D-alanyl carrier protein ligase DltA, which is the first protein in the D-alanylation pathway, was focused on. Here, the crystal structure of DltA from the methicillin-resistant S. aureus strain Mu50 is presented, which reveals the unique molecular details of the catalytic center and the role of the P-loop. Kinetic analysis shows that the enantioselectivity of S. aureus DltA is much higher than that of DltA from other species. In the presence of DltC, the enzymatic activity of DltA is increased by an order of magnitude, suggesting a new exploitable binding pocket. This discovery may pave the way for a new generation of treatments for drug-resistant S. aureus.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus , Proteínas Bacterianas/química , Proteínas Portadoras/metabolismo , Cinética , Ligasas , Staphylococcus aureus Resistente a Meticilina/metabolismo
16.
Gen Physiol Biophys ; 30(1): 100-5, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21460418

RESUMEN

T-type calcium channels are involved in a variety of physiological and pathophysiological processes, and thus could be therapeutic targets. However, there is no T-type channel selective blocker for use in clinical practice, demanding a need for the development of novel drugs where a higher-throughput screening system is required. Here we present pharmacological studies on Ca(v)3.1 T-type channels using automated patch-clamp. The IC(50) values obtained from automated patch-clamp and conventional one showed a good correlation (correlation coefficient of 0.82), suggesting that the automated patch-clamp is an efficient and reliable method for ranking the drug potencies for T-type channels.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/fisiología , Técnicas de Placa-Clamp/métodos , Canales de Calcio Tipo T/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Concentración 50 Inhibidora
17.
J Med Chem ; 64(16): 11934-11957, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34324343

RESUMEN

Focal adhesion kinase (FAK) is overexpressed in highly invasive and metastatic cancers. To identify novel FAK inhibitors, we designed and synthesized various thieno[3,2-d]pyrimidine derivatives. An intensive structure-activity relationship (SAR) study led to the identification of 26 as a lead. Moreover, 26, a multitargeted kinase inhibitor, possesses excellent potencies against FLT3 mutants as well as FAK. Gratifyingly, 26 remarkably inhibits recalcitrant FLT3 mutants, including F691L, that cause drug resistance. Importantly, 26 is superior to PF-562271 in terms of apoptosis induction, anchorage-independent growth inhibition, and tumor burden reduction in the MDA-MB-231 xenograft mouse model. Also, 26 causes regression of tumor growth in the MV4-11 xenograft mouse model, indicating that it could be effective against acute myeloid leukemia (AML). Finally, in an orthotopic mouse model using MDA-MB-231, 26 remarkably prevents metastasis of orthotopic tumors to lymph nodes. Taken together, the results indicate that 26 possesses potential therapeutic value against highly invasive cancers and relapsed AML.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/uso terapéutico , Tiofenos/uso terapéutico , Animales , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Simulación del Acoplamiento Molecular , Estructura Molecular , Metástasis de la Neoplasia/prevención & control , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/síntesis química , Pirimidinas/metabolismo , Pirimidinas/farmacología , Relación Estructura-Actividad , Tiofenos/síntesis química , Tiofenos/metabolismo , Tiofenos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Tirosina Quinasa 3 Similar a fms/metabolismo
18.
Eur J Med Chem ; 208: 112688, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32906067

RESUMEN

Anoctamin1 (ANO1), a calcium-activated chloride ion channel (CaCC), is associated with various physiological functions including cancer progression and metastasis/invasion. ANO1 has been considered as a promising target for cancer therapeutics as ANO1 is over-expressed in a variety of cancers including glioblastoma (GBM) and inhibition of ANO1 has been reported to suppress cell proliferation, migration and invasion in GBM. GBM is one of the most common and aggressive cancers with poor prognosis with median survival for 15 months. Lack of effective treatment options against GBM emphasizes urgent necessity of effective GBM therapeutics. In an effort to discover potent and selective ANO1 inhibitors capable of inhibiting GBM cells, we have designed and synthesized a series of new 2-aminothiophene-3-carboxamide derivatives and performed SAR studies using both fluorescent cellular membrane potential assay and whole-cell patch-clamp recording. We observed that among these substances, 9c and 10q strongly suppress ANO1 channel activities and possess remarkable selectivity over ANO2. Unique structural feature of 10q, a cyclopentane-fused thiophene-3-carboxamide derivative, is the presence of benzoylthiourea functionality which dramatically contributes to activity. Both 9c and 10q suppress more strongly proliferation of GBM cells than four reference compounds including 3, Ani-9 and are also capable of inhibiting much more strongly colony formation than reference compounds in both 2D colony formation assay and 3D soft agar assay using U251 glioma cells. In addition, 9c and 10q suppress far more strongly migration/invasion of GBM cells than reference compounds. We, for the first time, found that the combination of ANO1 inhibitor (9c or 3) and temozolomide (TMZ) brings about remarkable synergistic effects in suppressing proliferation of GBM cells. Our study may provide an insight into designing selective and potent ANO1 inhibitors aiming at GBM treatment.


Asunto(s)
Anoctamina-1/antagonistas & inhibidores , Antineoplásicos/farmacología , Glioblastoma/tratamiento farmacológico , Proteínas de Neoplasias/antagonistas & inhibidores , Tiofenos/farmacología , Animales , Antineoplásicos/síntesis química , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Células HEK293 , Humanos , Ratones , Estructura Molecular , Relación Estructura-Actividad , Temozolomida/farmacología , Tiofenos/síntesis química
19.
Biosci Rep ; 39(1)2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30538170

RESUMEN

The tetracycline repressor (TetR)-regulated system is a widely used tool to study gene functions through control of its expression. Various effectors such as tetracycline (Tc) and doxycycline (Dox) quickly induce or shut down gene expression, but reversing gene expression has not been eligible due to long half-lives of such effectors. Here, we found that procaspase activating compound 1 (PAC-1) rapidly reduces transient expression of TetR-regulated green fluorescent protein (GFP) in mammalian cells. Next, we applied PAC-1 to control of expression of transient receptor potential melastatin 7 (TRPM7) protein, whose downstream cellular events can be monitored by cell morphological changes. We observed that PAC-1 quickly reduces TRPM7 expression, consequently affecting cell morphology regulated by TRPM7. The present study demonstrates the first small molecule that efficiently turns off the TetR-regulated gene expression in mammalian cells, thereby precisely regulating the expression level of target gene.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Hidrazonas/farmacología , Piperazinas/farmacología , Proteínas Represoras/genética , Tetraciclina/farmacología , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Canales Catiónicos TRPM/genética
20.
Int J Nanomedicine ; 12: 5345-5357, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28794627

RESUMEN

Fibroblast growth factor receptors (FGFRs) play an important role in determining cell proliferation, differentiation, migration, and survival. Although a variety of small-molecule FGFR inhibitors have been developed for cancer therapeutics, the interaction between FGFRs and FGFR inhibitors has not been well characterized. The FGFR-inhibitor interaction can be characterized using a new imaging probe that has strong, stable signal properties for in situ cellular imaging of the interaction without quenching. We developed a kinase-inhibitor-modified quantum dot (QD) probe to investigate the interaction between FGFR and potential inhibitors. Especially, turbo-green fluorescent protein-FGFR3s were overexpressed in HeLa cells to investigate the colocalization of FGFR3 and AZD4547 using the QD-AZD4547 probe. The result indicates that this probe is useful for investigating the binding behaviors of FGFR3 with the FGFR inhibitor. Thus, this new inhibitor-modified QD probe is a promising tool for understanding the interaction between FGFR and inhibitors and for creating future high-content, cell-based drug screening strategies.


Asunto(s)
Benzamidas/química , Imagen Molecular/métodos , Piperazinas/química , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/química , Puntos Cuánticos/química , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/análisis , Benzamidas/farmacología , Células HeLa , Humanos , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/química , Pirazoles/farmacología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA