Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nano Lett ; 24(14): 4141-4149, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38536947

RESUMEN

Recently, van der Waals (vdW) antiferromagnets have been proposed to be crucial for spintronics due to their favorable properties compared to ferromagnets, including robustness against magnetic perturbation and high frequencies of spin dynamics. High-performance and energy-efficient spin functionalities often depend on the current-driven manipulation and detection of spin states, highlighting the significance of two-dimensional metallic antiferromagnets, which have not been much explored due to the lack of suitable materials. Here, we report a new metallic vdW antiferromagnet obtained from the ferromagnet Fe3GaTe2 by cobalt (Co) doping. Through the layer-number-dependent Hall resistance and magnetoresistance measurements, an evident odd-even layer-number effect has been observed in its few-layered flakes, suggesting that it could host an A-type antiferromagnetic structure. This peculiar layer-number-dependent magnetism in Co-doped Fe3GaTe2 helps unravel the complex magnetic structures in such doped vdW magnets, and our finding will enrich material candidates and spin functionalities for spintronic applications.

2.
Proc Natl Acad Sci U S A ; 118(20)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-33975955

RESUMEN

Bismuth and rare earth elements have been identified as effective substituent elements in the iron garnet structure, allowing an enhancement in magneto-optical response by several orders of magnitude in the visible and near-infrared region. Various mechanisms have been proposed to account for such enhancement, but testing of these ideas is hampered by a lack of suitable experimental data, where information is required not only regarding the lattice sites where substituent atoms are located but also how these atoms affect various order parameters. Here, we show for a Bi-substituted lutetium iron garnet how a suite of advanced electron microscopy techniques, combined with theoretical calculations, can be used to determine the interactions between a range of quantum-order parameters, including lattice, charge, spin, orbital, and crystal field splitting energy. In particular, we determine how the Bi distribution results in lattice distortions that are coupled with changes in electronic structure at certain lattice sites. These results reveal that these lattice distortions result in a decrease in the crystal-field splitting energies at Fe sites and in a lifted orbital degeneracy at octahedral sites, while the antiferromagnetic spin order remains preserved, thereby contributing to enhanced magneto-optical response in bismuth-substituted iron garnet. The combination of subangstrom imaging techniques and atomic-scale spectroscopy opens up possibilities for revealing insights into hidden coupling effects between multiple quantum-order parameters, thereby further guiding research and development for a wide range of complex functional materials.

3.
Nano Lett ; 23(22): 10205-10212, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37942916

RESUMEN

Target skyrmion, characterized by a central skyrmion surrounded by a series of concentric cylinder domains known as kπ-skyrmions (k ≥ 2), holds promise as a novel storage state in next-generation memories. However, target skyrmions comprising one or more concentric cylindrical domains have not been observed in chiral magnets, particularly at room temperature. In this study, we experimentally achieved kπ-skyrmions (k = 2, 3, and 4) with diameters of ∼220, 320, and 410 nm, respectively, and room-temperature stability under zero magnetic field by tightly confining these topological spin textures in ß-Mn-type Co8Zn10Mn2 nanodisks. The magnetic configurations and their field-driven evolutions were simultaneously investigated by using in situ off-axis electron holography. In combination with numerical simulations, we further investigated the dependence of kmax on the nanodisk diameter. These findings highlight the potential of kπ-skyrmions as information carriers and offer insights into manipulation of kπ-skyrmions in the future.

4.
Clin Oral Investig ; 27(8): 4617-4631, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37294355

RESUMEN

OBJECTIVES: After bonding brackets to the first deciduous molar in a 2 × 4 technique, a three-dimensional finite element analysis (3D FEA) is used to demonstrate the biomechanical changes in an orthodontic system. This study aims to opt for the appropriate type of orthodontic technology by analyzing and comparing the mechanical systems produced by two types of 2 × 4 techniques employing rocking-chair archwires. MATERIALS AND METHODS: Herein, the maxilla and maxillary dentition are modeled by cone beam computed tomography (CBCT) and 3D FEA. Common clinically used 0.016-inch round archwires (material: titanium-molybdenum alloy and stainless-steel) and 0.018-inch round archwires (material: titanium-molybdenum alloy and stainless-steel) are bent into the shape of a rocking chair with a depth of 3 mm. The forces and moments applied to the brackets are transferred to the dentition to evaluate the biomechanical effects of the 2 × 4 technique after the bracket is bonded to the first deciduous molar. RESULTS: For the central incisor, the teeth-moving distance in all three directions increases with bracket bonding to the first deciduous molar applying the 0.016-inch rocking-chair archwire. For the lateral incisor, the tooth root moves toward the gingival side when using 0.016-inch and 0.018-inch archwires. Moreover, for the same archwire size, the lateral incisors move toward the gingival side by bonding the bracket to the first deciduous molar. After bonding a bracket to the first deciduous molar, using rocking-chair archwires of 0.016 inch or 0.018 inch, the buccal movement distance of the first molar crown increases in the X-axis direction. In the Y-axis and Z-axis directions, the modified 2 × 4 technique significantly increases the effect of backward-tipping compared with the traditional 2 × 4 technique. CONCLUSIONS: In clinical practice, the modified 2 × 4 technique can be used to increase the movement distance of anterior teeth to a certain extent and accelerate the orthodontic teeth movement. Moreover, the modified 2 × 4 technique is better in anchorage conservation of the first molar than the traditional technique. CLINICAL RELEVANCE: Although the traditional 2 × 4 technique is widely used in early orthodontic treatment, we found mucosal damage and abnormal archwire deformation might affect orthodontic treatment time and effect. The modified 2 × 4 technique is a novel approach that avoids these drawbacks and improves orthodontic treatment efficiency.


Asunto(s)
Soportes Ortodóncicos , Alambres para Ortodoncia , Aleaciones Dentales , Análisis de Elementos Finitos , Titanio , Molibdeno , Aleaciones , Técnicas de Movimiento Dental/métodos , Acero , Acero Inoxidable , Ensayo de Materiales
5.
Nano Lett ; 21(7): 2946-2952, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33759536

RESUMEN

The flexoelectric effect, which manifests itself as a strain-gradient-induced electrical polarization, has triggered great interest due to its ubiquitous existence in crystalline materials without the limitation of lattice symmetry. Here, we propose a flexoelectric photodetector based on a thin-film heterostructure. This prototypical device is demonstrated by epitaxial LaFeO3 thin films grown on LaAlO3 substrates. A giant strain gradient of the order of 106/m is achieved in LaFeO3 thin films, giving rise to an obvious flexoelectric polarization and generating a significant photovoltaic effect in the LaFeO3-based heterostructures with nanosecond response under light illumination. This work not only demonstrates a novel self-powered photodetector different from the traditional interface-type structures, such as the p-n and Schottky junctions but also opens an avenue to design practical flexoelectric devices for nanoelectronics applications.

6.
Phys Rev Lett ; 127(8): 087202, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34477412

RESUMEN

Here we have developed an approach of three-dimensional (3D) measurement of magnetic moment vectors in three Cartesian directions using electron magnetic chiral dichroism (EMCD) at atomic scale. Utilizing a subangstrom convergent electron beam in the scanning transmission electron microscopy (STEM), beam-position-dependent chiral electron energy-loss spectra (EELS), carrying the EMCD signals referring to magnetization in three Cartesian directions, can be obtained during the scanning across the atomic planes. The atomic resolution EMCD signals from all of three directions can be separately obtained simply by moving the EELS detector. Moreover, the EMCD signals can be remarkably enhanced using a defocused electron beam, relieving the issues of low signal intensity and signal-to-noise-ratio especially at atomic resolution. Our proposed method is compatible with the setup of the widely used atomic resolution STEM-EELS technique and provides a straightforward way to achieve 3D magnetic measurement at atomic scale on newly developing magnetic-field-free TEM.

7.
Nano Lett ; 20(4): 2493-2499, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32134679

RESUMEN

Using interlayer interaction to control functional heterostructures with atomic-scale designs has become one of the most effective interface-engineering strategies nowadays. Here, we demonstrate the effect of a crystalline LaFeO3 buffer layer on amorphous and crystalline LaAlO3/SrTiO3 heterostructures. The LaFeO3 buffer layer acts as an energetically favored electron acceptor in both LaAlO3/SrTiO3 systems, resulting in modulation of interfacial carrier density and hence metal-to-insulator transition. For amorphous and crystalline LaAlO3/SrTiO3 heterostructures, the metal-to-insulator transition is found when the LaFeO3 layer thickness crosses 3 and 6 unit cells, respectively. Such different critical LaFeO3 thicknesses are explained in terms of distinct characteristic lengths of the redox-reaction-mediated and polar-catastrophe-dominated charge transfer, controlled by the interfacial atomic contact and Thomas-Fermi screening effect, respectively. Our results not only shed light on the complex interlayer charge transfer across oxide heterostructures but also provide a new route to precisely tailor the charge-transfer process at a functional interface.

8.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 38(6): 1229-1234, 2021 Dec 25.
Artículo en Zh | MEDLINE | ID: mdl-34970907

RESUMEN

With the continuous progress of materials science and biology, the significance of biomaterials with dual characteristics of materials science and biology is keeping on increasing. Nowadays, more and more biomaterials are being used in tissue engineering, pharmaceutical engineering and regenerative medicine. In repairing bone defects caused by trauma, tumor invasion, congenital malformation and other factors, a variety of biomaterials have emerged with different characteristics, such as surface charge, surface wettability, surface composition, immune regulation and so on, leading to significant differences in repair effects. This paper mainly discusses the influence of surface charge of biomaterials on bone formation and the methods of introducing surface charge, aiming to promote bone formation by changing the charge distribution on the surface of the biomaterials to serve the clinical treatment better.


Asunto(s)
Materiales Biocompatibles , Osteogénesis , Medicina Regenerativa , Ingeniería de Tejidos
9.
J Am Chem Soc ; 140(45): 15252-15260, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30339004

RESUMEN

Due to growing environmental concerns on the toxicity of lead-based piezoelectric materials, lead-free alternatives are urgently required but so far have not been able to reach competitive performance. Here we employ a novel phase-boundary engineering strategy utilizing the multiphase convergence, which induces a broad structural flexibility in a wide phase-boundary zone with contiguous polymorphic phase transitions. We achieve an ultrahigh piezoelectric constant ( d33) of 700 ± 30 pC/N in BaTiO3-based ceramics, maintaining >600 pC/N over a wide composition range. Atomic resolution polarization mapping by Z-contrast imaging reveals the coexistence of three ferroelectric phases (T + O + R) at the nanoscale with nanoscale polarization rotation between them. Theoretical simulations confirm greatly reduced energy barriers facilitating polarization rotation. Our lead-free material exceeds the performance of the majority of lead-based systems (including the benchmark PZT-5H) in the temperature range of 10-40 °C, making it suitable as a lead-free replacement in practical applications. This work offers a new paradigm for designing lead-free functional materials with superior electromechanical properties.

10.
Phys Rev Lett ; 120(16): 167204, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29756913

RESUMEN

Whereas theoretical investigations have revealed the significant influence of magnetic surface and edge states on Skyrmonic spin texture in chiral magnets, experimental studies of such chiral states remain elusive. Here, we study chiral edge states in an FeGe nanostripe experimentally using off-axis electron holography. Our results reveal the magnetic-field-driven formation of chiral edge states and their penetration lengths at 95 and 240 K. We determine values of saturation magnetization M_{S} by analyzing the projected in-plane magnetization distributions of helices and Skyrmions. Values of M_{S} inferred for Skyrmions are lower by a few percent than those for helices. We attribute this difference to the presence of chiral surface states, which are predicted theoretically in a three-dimensional Skyrmion model. Our experiments provide direct quantitative measurements of magnetic chiral boundary states and highlight the applicability of state-of-the-art electron holography for the study of complex spin textures in nanostructures.

11.
Nano Lett ; 17(1): 508-514, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-27936792

RESUMEN

Magnetic skyrmions are topologically stable vortex-like spin structures that are promising for next generation information storage applications. Materials that host magnetic skyrmions, such as MnSi and FeGe with the noncentrosymmetric cubic B20 crystal structure, have been shown to stabilize skyrmions upon nanostructuring. Here, we report a chemical vapor deposition method to selectively grow nanowires (NWs) of cubic FeGe out of three possible FeGe polymorphs for the first time using finely ground particles of cubic FeGe as seeds. X-ray diffraction and transmission electron microscopy (TEM) confirm that these micron-length NWs with ∼100 nm to 1 µm diameters have the cubic B20 crystal structure. Although Fe13Ge8 NWs are also formed, the two types of NWs can be readily differentiated by their faceting. Lorentz TEM imaging of the cubic FeGe NWs reveals a skyrmion lattice phase under small applied magnetic fields (∼0.1 T) at 233 K, a skyrmion chain state at lower temperatures (95 K) and under high magnetic fields (∼0.4 T), and a larger skyrmion stability window than bulk FeGe. This synthetic approach to cubic FeGe NWs that support stabilized skyrmions opens a route toward the exploration of new skyrmion physics and devices based on similar nanostructures.

12.
J Am Chem Soc ; 139(28): 9714-9720, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28635266

RESUMEN

We report the high thermoelectric performance of p-type polycrystalline SnSe obtained by the synergistic tailoring of band structures and atomic-scale defect phonon scattering through (Na,K)-codoping. The energy offsets of multiple valence bands in SnSe are decreased after Na doping and further reduced by (Na,K)-codoping, resulting in an enhancement in the Seebeck coefficient and an increase in the power factor to 492 µW m-1 K-2. The lattice thermal conductivity of polycrystalline SnSe is decreased by the introduction of effective phonon scattering centers, such as point defects and antiphase boundaries. The lattice thermal conductivity of the material is reduced to values as low as 0.29 W m-1 K-1 at 773 K, whereas ZT is increased from 0.3 for 1% Na-doped SnSe to 1.2 for 1% (Na,K)-codoped SnSe.

13.
Phys Rev Lett ; 119(19): 197205, 2017 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-29219505

RESUMEN

A target Skyrmion is a flux-closed spin texture that has twofold degeneracy and is promising as a binary state in next generation universal memories. Although its formation in nanopatterned chiral magnets has been predicted, its observation has remained challenging. Here, we use off-axis electron holography to record images of target Skyrmions in a 160-nm-diameter nanodisk of the chiral magnet FeGe. We compare experimental measurements with numerical simulations, demonstrate switching between two stable degenerate target Skyrmion ground states that have opposite polarities and rotation senses, and discuss the observed switching mechanism.

14.
Sensors (Basel) ; 15(8): 20086-96, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26287205

RESUMEN

Ag-modified In2O3/ZnO bundles with micro/nano porous structures have been designed and synthesized with by hydrothermal method continuing with dehydration process. Each bundle consists of nanoparticles, where nanogaps of 10-30 nm are present between the nanoparticles, leading to a porous structure. This porous structure brings high surface area and fast gas diffusion, enhancing the gas sensitivity. Consequently, the HCHO gas-sensing performance of the Ag-modified In2O3/ZnO bundles have been tested, with the formaldehyde-detection limit of 100 ppb (parts per billion) and the response and recover times as short as 6 s and 3 s, respectively, at 300 °C and the detection limit of 100 ppb, response time of 12 s and recover times of 6 s at 100 °C. The HCHO sensing detect limitation matches the health standard limitation on the concentration of formaldehyde for indoor air. Moreover, the strategy to synthesize the nanobundles is just two-step heating and easy to scale up. Therefore, the Ag-modified In2O3/ZnO bundles are ready for industrialization and practical applications.


Asunto(s)
Electrónica/instrumentación , Formaldehído/análisis , Gases/análisis , Indio/química , Nanopartículas/química , Plata/química , Óxido de Zinc/química , Nanopartículas/ultraestructura , Nitrógeno/química , Espectrometría por Rayos X , Temperatura
15.
Int J Biol Macromol ; 259(Pt 2): 129358, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218267

RESUMEN

To expand functions of transparent wood (TW) including fluorescence, ultraviolet blocking, heat preservation and insulation, we adopted carbon quantum dots (CQDs) to prepare luminescent transparent wood. CQDs with yellow/red fluorescence (YCD/RCD) were prepared by chitosan and o-phenylenediamine. Afterwards, Balsa woods were pretreated to obtain wood frameworks (DW/LW), which were further combined with epoxy resin for achieving transparent woods (DW-TW/LW-TW). Results showed LW retained more lignin, the LW-TW blocked more ultraviolet light, displaying the better visible transmission and mechanical strength than DW-TW. After adding YCD and RCD to LW-TW, the yellow and red fluorescence transparent woods with outstanding mechanical and ultraviolet blocking properties were prepared, especially the red fluorescence transparent wood (RTW). Specifically, the tensile strength and elongation at break of RTW reached up to 19.39 MPa and 5.35 %, respectively. Moreover, RTW could block 78.8 % of UV-B light and 78 % of UV-A light, respectively. Besides, RTW possessed excellent visible transmission (70.3 %) and UV blocking (88.87 %). Significantly, both RTW and YTW displayed outstanding water repellency, excellent durability, good thermal stability and insulation. Predictably, luminescent transparent woods certainly will enhance the adaptability of wood, and broaden its applications in green decoration, lighting setup, sensor and other fields.


Asunto(s)
Quitosano , Madera , Luminiscencia , Fluorescencia , Carbono
16.
Adv Mater ; 36(29): e2401021, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38695721

RESUMEN

Brain-inspired neuromorphic computing has attracted widespread attention owing to its ability to perform parallel and energy-efficient computation. However, the synaptic weight of amorphous/polycrystalline oxide based memristor usually exhibits large nonlinear behavior with high asymmetry, which aggravates the complexity of peripheral circuit system. Controllable growth of conductive filaments is highly demanded for achieving the highly linear conductance modulation. However, the stochastic behavior of the filament growth in commonly used amorphous/polycrystalline oxide memristor makes it very challenging. Here, the epitaxially grown Hf0.5Zr0.5O2-based memristor with the linearity and symmetry approaching ideal case is reported. A layer of Cu nanoparticles is inserted into epitaxially grown Hf0.5Zr0.5O2 film to form the grain boundaries due to the breaking of the epitaxial growth. By combining with the local electric field enhancement, the growth of filament is confined in the grain boundaries due to the fact that the diffusion of oxygen vacancy in crystalline lattice is more difficult than that in the grain boundaries. Furthermore, the decimal operation and high-accuracy neural network are demonstrated by utilizing the highly linear and multi-level conductance modulation capacity. This method opens an avenue to control the filament growth for the application of resistance random access memory (RRAM) and neuromorphic computing.

17.
Nat Commun ; 15(1): 5104, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877022

RESUMEN

The recent discovery of superconductivity in infinite-layer nickelate films has sparked significant interest and expanded the realm of superconductors, in which the infinite-layer structure and proper chemical doping are both of the essence. Nonetheless, the reasons for the absence of superconductivity in bulk infinite-layer nickelates remain puzzling. Herein, we investigate atomic defects and electronic structures in bulk infinite-layer Nd0.8Sr0.2NiO2 using scanning transmission electron microscopy. Our observations reveal the presence of three-dimensional (3D) block-like structural domains resulting from intersecting defect structures, disrupting the continuity within crystal grains, which could be a crucial factor in giving rise to the insulating character and inhibiting the emergence of superconductivity. Moreover, the infinite-layer structure, without complete topotactic reduction, retains interstitial oxygen atoms on the Nd atomic plane in bulk nickelates, possibly further aggravating the local distortions of NiO2 planes and hindering the superconductivity. These findings shed light on the existence of structural and atomic defects in bulk nickelates and provide valuable insights into the influence of proper topotactic reduction and structural orders on superconductivity.

18.
Nat Commun ; 15(1): 5614, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965221

RESUMEN

The current-driven movement of magnetic skyrmions along a nanostripe is essential for the advancement and functionality of a new category of spintronic devices resembling racetracks. Despite extensive research into skyrmion dynamics, experimental verification of current-induced motion of ultra-small skyrmions within an ultrathin nanostripe is still pending. Here, we unveil the motion of individual 80 nm-size skyrmions in an FeGe track with an ultrathin width of 100 nm. The skyrmions can move steadily along the track over a broad range of current densities by using controlled pulse durations of as low as 2 ns. The potential landscape, arising from the magnetic edge twists in such a geometrically confined system, introduces skyrmion inertia and ensures efficient motion with a vanishing skyrmion Hall angle. Our results showcase the steady motion of skyrmions in an ultrathin track, offering a practical pathway for implementing skyrmion-based spintronic devices.

19.
Int J Biol Macromol ; 267(Pt 2): 131416, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582486

RESUMEN

Heavy metal ions have extremely high toxicity. As the top of food chain, human beings certainly will accumulate them by ingesting food and participating other activities, which eventually result in the damage to our health. Therefore, it is very meaningful and necessary to design a simple, portable, stable and efficient material for heavy metal ions detection. Based on the spirolactam Rhodamine 6G (SRh6G) fluorescent probe, we prepared two types of nanocomposite materials (membrane and aerogel) by vacuum filtration and freeze-drying methods with lignocellulose nanofiber (CNF) as a carrier, polyvinyl alcohol (PVA) and glutaraldehyde (GA) as the cross-linkers. Then the microstructure, chemical composition, wetting property, fluorescence intensity and selectivity of as-prepared SRh6G/PVA/CNF would be characterized and analyzed. Results showed that SRh6G/PVA/CNF nanocomposites would turn red in color under strong acidic environment and produced orange fluorescence under ultraviolet light. Besides, they were also to detect Al3+, Cu2+, Hg2+, Fe3+ and Ag+ through color and fluorescence variations. We had further tested its sensitivity, selectivity, adsorption, fluorescence limits of detection (LOD) to Fe3+ and Cu2+. The test towards real water samples (hospital wastewater, Songhua River and tap water) proved that SRh6G/PVA/CNF nanocomposites could detect the polluted water with low concentrations of Fe3+ and Cu2+. In addition, SRh6G/PVA/CNF nanocomposites have excellent mechanical property, repeatability, superhydrophilicity and underwater superoleophobicity, which may offer a theoretical reference for the assembly strategy and detection application of cellulose-based fluorescent probe.


Asunto(s)
Colorantes Fluorescentes , Lignina , Nanofibras , Rodaminas , Aguas Residuales , Contaminantes Químicos del Agua , Rodaminas/química , Lignina/química , Lignina/análisis , Aguas Residuales/química , Aguas Residuales/análisis , Nanofibras/química , Colorantes Fluorescentes/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Colorimetría/métodos , Metales Pesados/análisis , Metales Pesados/química , Nanocompuestos/química , Iones/análisis , Límite de Detección , Alcohol Polivinílico/química
20.
Nat Commun ; 15(1): 8427, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39341802

RESUMEN

All-insulator heterostructures with an emerging metallicity are at the forefront of material science, which typically contain at least one band insulator while it is not necessary to be. Here we show emergent phenomena in a series of all-correlated-insulator heterostructures that composed of insulating CaIrO3 and insulating La0.67Sr0.33MnO3. We observed an intriguing insulator-to-metal transition, that depends delicately on the thickness of the iridate component. The simultaneous enhancements of magnetization, electric conductivity, and magnetoresistance effect indicate a percolation-type nature of the insulator-to-metal transition, with the percolation threshold can be reached at an exceptionally low volume fraction of the iridate. Such a drastic transition is induced by an interfacial charge transfer, which interestingly alters the electronic and crystalline structures of the bulk region rather than the limited ultrathin interface. We further showcased the central role of effective correlation in modulating the insulator-to-metal transition, by demonstrating that the critical thickness of iridate for triggering the metallic state can be systematically reduced down to a single unit-cell layer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA