Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 18(48): 33211-33217, 2016 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-27892577

RESUMEN

We fabricated Cu(In,Ga)Se2 (CIGS) solar cells with chemical-bath deposited (CBD) ZnS buffer layers with different deposition times. The conversion efficiency and the fill factor of the CIGS solar cells reveal a strong dependence on the deposition time of CBD-ZnS films. In order to understand the detailed relationship between the heterojunction structure and the electronic properties of CIGS solar cells with different deposition times of CBD-ZnS films, capacitance-voltage (C-V) profiling measurements with additional laser illumination were performed. The light-soaking effects on CIGS solar cells with a CBD-ZnS buffer layer were investigated in detail using current density-voltage (J-V) and C-V measurements with several different lasers with different emission wavelengths. After light-soaking, the conversion efficiency changed significantly and the double diode feature in J-V curves disappeared. We explain that the major reason for the improvement of efficiency by light-soaking is due to the fact that negatively charged and highly defective vacancies in the CIGS absorber near the interface of CBD-ZnS/CIGS were formed and became neutral due to carriers generated by ultra-violet absorption in the buffer layer.

2.
J Am Chem Soc ; 136(25): 8883-6, 2014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-24919086

RESUMEN

The fast degradation of lead selenide (PbSe) nanocrystal quantum dots (NQDs) in ambient conditions impedes widespread deployment of the highly excitonic, thus versatile, colloidal NQDs. Here we report a simple in situ post-synthetic halide salt treatment that results in size-independent air stability of PbSe NQDs without significantly altering their optoelectronic characteristics. From TEM, NMR, and XPS results and DFT calculations, we propose that the unprecedented size-independent air stability of the PbSe NQDs can be attributed to the successful passivation of under-coordinated PbSe(100) facets with atomically thin PbX2 (X = Cl, Br, I) adlayers. Conductive films made of halide-treated ultrastable PbSe NQDs exhibit markedly improved air stability and behave as an n-type channel in a field-effect transistor. Our simple in situ wet-chemical passivation scheme will enable broader utilization of PbSe NQDs in ambient conditions in many optoelectronic applications.

3.
Opt Express ; 20(3): 2116-23, 2012 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-22330452

RESUMEN

Optical properties of InGaN/GaN multi-quantum-well (MQW) structures with a nanolayer of Ag/SiO2 nanoparticle (NP) on top were studied. Modeling and optical absorption (OA) measurements prove that the NPs form localized surface plasmons (LSP) structure with a broad OA band peaked near 440-460 nm and the fringe electric field extending down to about 10 nm into the GaN layer. The presence of this NP LSP electrical field increases the photoluminescence (PL) intensity of the MQW structure by about 70% and markedly decreases the time-resolved PL (TRPL) relaxation time due to the strong coupling of MQW emission to the LSP mode.


Asunto(s)
Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Modelos Teóricos , Resonancia por Plasmón de Superficie/instrumentación , Simulación por Computador , Diseño Asistido por Computadora , Transferencia de Energía , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Dispersión de Radiación
4.
Langmuir ; 28(25): 9244-9, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22647237

RESUMEN

Synthesis of silver nanoplates was studied in the modified polyol method, where the nucleation and seed stage occurred in a poly(ethylene glycol) (PEG)-water mixture solution, and the growth stage happened in the PEG environment. The morphological evolution of nanoplates was characterized using UV, SEM, and TEM. Interestingly, plane nanostructures with unusual jagged edges were finally formed in our modified polyol method. Using TEM, we observed the medium state of fusion between two nanoplates, resulting in generating unusual jagged edges. Therefore, a novel two-dimensional oriented attachment occurred in our modified polyol method, which involves smaller nanoplates as the building blocks. Further control experiments showed that the presence of water could break this kinetic preferred reactivity, leading to the formation of nanoparticles.

5.
J Nanosci Nanotechnol ; 12(2): 966-70, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22629880

RESUMEN

We investigated the critical conditions to realize reliable and nano-engineered templates for surface-plasmon enhanced Raman scattering (SERS). Ultra-sensitive SERSs of thymine oligonucleotides were successfully realized on the template of Au nanoparticle arrays which were prepared by the combination of electron-beam lithography and post-chemical modification techniques. Drastic enhancement of Raman signal from the thymine oligonucleotides was only observed on the optimized templates, where the tuning of the plasmon resonance condition and the formation of the hot spots were both critical. Our results suggest that the artificial generation of reproducible and controlled hot spots can be achieved by our approach.

6.
ACS Nano ; 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36583517

RESUMEN

The crucial issue of wettability in high-energy-density lithium-ion batteries (LIBs) has not been comprehensively addressed to date. To overcome the challenge, state-of-the-art LIBs employing a ceramic-coated separator improves the safety- and wettability-related aspects of LIBs. Here, we present a mechanistic study of the effects of a ceramic-coated layer (CCL) on electrode wettability and report the optimal position of the CCL in LIBs. The electrolyte wetting was investigated using the multiphase lattice Boltzmann method and electrochemical impedance spectroscopy for capturing the electrolyte-transport dynamics in porous electrodes and impedance spectra in pouch-type LIBs, respectively. Results indicate that the CCL caused the velocity vector to transport the electrolyte further, resulting in an increase in the wetting rate. Moreover, the location of the CCL considerably affected the wettability of the LIBs. This study provides mechanical insight into the design and fabrication of high-performance LIBs by incorporating CCLs.

7.
Micromachines (Basel) ; 13(8)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-36014154

RESUMEN

The trap states and defects near the active region in deep-ultraviolet (DUV) light-emitting diodes (LED) were investigated through wavelength-dependent photocurrent spectroscopy. We observed anomalous photocurrent reversal and its temporal recovery in AlGaN-based DUV LEDs as the wavelength of illuminating light varied from DUV to visible. The wavelength-dependent photocurrent measurements were performed on 265 nm-emitting DUV LEDs under zero-bias conditions. Sharp near-band-edge (~265 nm) absorption was observed in addition to broad (300-800 nm) visible-range absorption peaks in the photocurrent spectrum, while the current direction of these two peaks were opposite to each other. In addition, the current direction of the photocurrent in the visible wavelength range was reversed when a certain forward bias was applied. This bias-induced current reversal displayed a slow recovery time (~6 h) when the applied forward voltage was removed. Furthermore, the recovery time showed strong temperature dependency and was faster as the sample temperature increased. This result can be consistently explained by the presence of hole traps at the electron-blocking layer and the band bending caused by piezoelectric polarization fields. The activation energy of the defect state was calculated to be 279 meV using the temperature dependency of the recovery time.

8.
Small ; 7(4): 484-91, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21360807

RESUMEN

The ability to create and manipulate large arrays of inorganic semiconductor micro/nanostructures for integration on unconventional substrates provides new possibilities in device engineering. Here, simple methods are described for the preparation of structures of single crystalline silicon in suspended and tethered configurations that facilitate their deterministic assembly using transfer-printing techniques. Diverse shapes (e.g., straight or curved edges), thicknesses (between 55 nm and 3 µm), and sizes (areas of 4000 µm(2) to 117 mm(2) ) of structures in varied layouts (regular or irregular arrays, with dense or sparse coverages) can be achieved, using either flat or cylindrical roller-type stamps. To demonstrate the technique, printing with 100% yield onto curved, rigid supports of glass and ceramics and onto thin sheets of plastic is shown. The fabrication of a printed array of silicon p(+) -i-n(+) junction photodiodes on plastic is representative of device-printing capabilities.


Asunto(s)
Nanoestructuras/química , Nanotecnología/métodos , Silicio/química , Dimetilpolisiloxanos/química
9.
J Nanosci Nanotechnol ; 21(11): 5736-5741, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33980387

RESUMEN

We investigated the heat dissipation in heterostructure field-effect transistors (HFETs) using microRaman measurement of the temperature in active AIGaN/GaN. By varying the gate structure, the heat dissipation through the gate was clearly revealed. The temperature increased to 120 °C at the flat gate device although the inserted gate increased to only 37 °C. Our results showed that the inserted gate structure reduced the self-heating effect by three times compared to the flat gate structure. Temperature mapping using micro-Raman measurement confirmed that the temperature of the near gate area was lower than that of the near drain area. This indicated that the inserted gate electrode structure effectively prohibited self-heating effects.

10.
Sci Rep ; 10(1): 12475, 2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32719367

RESUMEN

A graphene-PbS quantum dot (QD) composite for application in high-performance near-infrared (NIR) photodetectors (PDs) is proposed in this study. A single-layer graphene flake and oleic acid-capped PbS QD composite is fabricated through the conventional sonication process, in hexane solution. Field emission scanning electron microscopy images of the graphene-PbS QD composite dispersed on a glass substrate confirm that the composite contains both aggregated graphene flakes and single-layer graphene with wrinkles; Transmission electron microscopy images reveal close packing with uniform size. The increased absorbance and quenched photoluminescence intensity of the graphene-PbS QD composite supports enhanced photoinduced charge transfer between graphene and the PbS QDs. Moreover, the specific Raman mode of the PbS QDs, embedded in the spectrum, is enhanced by combination with graphene, which can be interpreted by SERS as relevant to the photoinduced charge transfer between the Pbs QDs and graphene. For device application, a PD structure comprised by graphene-PbS QDs is fabricated. The photocurrent of the PD is measured using a conventional probe station with a 980-nm NIR laser diode. In the fabricated PD comprising graphene-PbS QDs, five-times higher photocurrent, 22% faster rise time, and 47% faster decay time are observed, compared to that comprising PbS QDs alone. This establishes the potential of the graphene-PbS QD composite for application in ultrathin, flexible, high-performance NIR PDs.

11.
Nanotechnology ; 20(8): 085204, 2009 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-19417444

RESUMEN

Periodic Au nanoparticle arrays, fabricated using electron beam lithography, have been modified by chemical reaction in solutions having various concentrations of a reducing agent. As the nanoparticles enlarge due to the formation of additional Au nanolumps on the surface, both the position and intensity of plasmon absorbance of Au nanoparticle arrays change in proportion to the concentration of the reducing agent. Moreover, the plasmon absorbance is split into dipole and quadrupole modes as conductive connections form between the particles. Our results demonstrate that the changes in both the position and intensity of plasmon absorbance can be employed together as complementary readout values of nanosensors.


Asunto(s)
Cristalización/métodos , Oro/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Resonancia por Plasmón de Superficie/métodos , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
12.
Korean J Parasitol ; 47(3): 275-80, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19724702

RESUMEN

Trichuris trichiura, commonly referred to as a whipworm, has a worldwide distribution, particularly among countries with warm, humid climates. In Korea, trichuriasis was a highly prevalent soil-transmitted helminthiasis until the 1970s. However, the nationwide prevalence decreased to 0.02% in 2004 as a result of national control activities and improvement in the socioeconomic status of Koreans. Most infected individuals have no distinct symptoms, if lightly infected. The diagnosis is typically confirmed by detection of T. trichiura eggs on examination of a stool sample; few reports have described detection of the parasite during colonoscopy. Recently, we managed 4 patients with trichuriasis who were diagnosed by detection of the parasite on colonoscopy, and we reviewed the literature on the colonoscopic diagnosis of T. trichiura in Korea. We suggest that colonoscopy might be a useful diagnostic tool, especially when infected by only a few male worms with no eggs in the stool.


Asunto(s)
Tricuriasis/diagnóstico , Trichuris/citología , Adulto , Anciano , Animales , Colonoscopía , Femenino , Humanos , Corea (Geográfico) , Masculino , Persona de Mediana Edad , Tricuriasis/parasitología
13.
Gut Liver ; 13(1): 16-24, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30400734

RESUMEN

The most common cause of antibiotic-associated diarrhea is Clostridium difficile infection (CDI). Recurrent C. difficile infection (rCDI) often occurs after successful treatment of CDI. Due to the increased incidence and the difficulty in treating rCDI, it is becoming an important clinical issue. Identifying risk factors is helpful for early detection, treatment, and prevention of rCDI. Advanced age, use of antibiotics, gastric acid suppression, and infection with a hypervirulent strain are currently regarded as the major risk factors for rCDI. Several treatment modalities, including vancomycin, fidaxomicin, and fecal microbiota transplant (FMT), are suggested for rCDI treatment. However, there is currently no definitive treatment method with sufficient evidence for rCDI. Recent studies have focused on FMT and have shown positive results for rCDI. Prevention of rCDI by measures such as hand washing and isolation of patients is very important. However, these preventive measures are often overlooked in clinical practice. Here, we review the risk factors, treatment, and prevention of rCDI.


Asunto(s)
Antibacterianos/uso terapéutico , Clostridioides difficile , Infecciones por Clostridium/terapia , Enterocolitis Seudomembranosa/terapia , Prevención Secundaria/métodos , Infecciones por Clostridium/etiología , Infecciones por Clostridium/prevención & control , Enterocolitis Seudomembranosa/etiología , Enterocolitis Seudomembranosa/prevención & control , Trasplante de Microbiota Fecal/métodos , Humanos , Recurrencia , Factores de Riesgo
14.
Nat Commun ; 9(1): 4267, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30323251

RESUMEN

We introduce indium arsenide colloidal quantum dot films for photovoltaic devices, fabricated by two-step surface modification. Native ligands and unwanted oxides on the surface are peeled off followed by passivating with incoming atomic or short ligands. The near-infrared-absorbing n-type indium arsenide colloidal quantum dot films can be tuned in energy-level positions up to 0.4 eV depending on the surface chemistry, and consequently, they boost collection efficiency when used in various emerging solar cells. As an example, we demonstrate p-n junction between n-type indium arsenide and p-type lead sulfide colloidal quantum dot layers, which leads to a favorable electronic band alignment and charge extraction from both colloidal quantum dot layers. A certified power conversion efficiency of 7.92% is achieved without additionally supporting carrier transport layers. This study provides richer materials to explore for high-efficiency emerging photovoltaics and will broaden research interest for various optoelectronic applications using the n-type covalent nanocrystal arrays.

15.
Adv Mater ; 30(25): e1707224, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29748976

RESUMEN

A novel self-charging platform is proposed using colloidal-quantum-dot (CQD) photovoltaics (PVs) via the near-infrared (NIR) band for low-power electronics. Low-bandgap CQDs can convert invisible NIR light sources to electrical energy more efficiently than wider spectra because of reduced thermalization loss. This energy-conversion strategy via NIR photons ensures an enhanced photostability of the CQD devices. Furthermore, the NIR wireless charging system can be concealed using various colored and NIR-transparent fabric or films, providing aesthetic freedom. Finally, an NIR-driven wireless charging system is demonstrated for a wearable healthcare bracelet by integrating a CQD PVs receiver with a flexible lithium-ion battery and entirely embedding them into a flexible strap, enabling permanent self-charging without detachment.

16.
Nano Converg ; 4(1): 21, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28835877

RESUMEN

Colloidal quantum dots (CQDs) have attracted attention as a next-generation of photovoltaics (PVs) capable of a tunable band gap and low-cost solution process. Understanding and controlling the surface of CQDs lead to the significant development in the performance of CQD PVs. Here we review recent progress in the realization of low-cost, efficient lead chalcogenide CQD PVs based on the surface investigation of CQDs. We focus on improving the electrical properties and air stability of the CQD achieved by material approaches and growing the power conversion efficiency (PCE) of the CQD PV obtained by structural approaches. Finally, we summarize the manners to improve the PCE of CQD PVs through optical design. The various issues mentioned in this review may provide insight into the commercialization of CQD PVs in the near future.

17.
J Phys Chem Lett ; 8(21): 5259-5263, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28994598

RESUMEN

Organic-inorganic hybrid photovoltaics (PVs) have recently attracted considerable attention as their PV performance has rapidly improved. Abnormal current-voltage (I-V) characteristics or I-V hysteresis, however, were occasionally observed in such systems that hampered the development of the PV technology. Here we study the hysteresis of organic-inorganic hybrid colloidal quantum dot (CQD) PVs by analyzing I-V characteristics upon systematic modulation of organic components of CQDs. We demonstrate that an external bias stress to CQD films transiently prompts redistribution of mobile ions, particularly protons of surface ligands, thus leading to the formation of a transient space-charge region in the CQD films. The variable space-charge region causes I-V hysteresis and photoinstability of CQD PVs, which is closely correlated with the transient behavior of mobile ions. Our findings here could provide significant implications to the understanding of the influence of mobile ions on I-V hysteresis in other organic-inorganic hybrid PVs such as perovskites.

18.
Sci Rep ; 7(1): 17393, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29234046

RESUMEN

Bandgap tunability and broadband absorption make quantum-dot (QD) photovoltaic cells (PVs) a promising candidate for future solar energy conversion systems. Approaches to improving the electrical properties of the active layer increase efficiency in part. The present study focuses on optical room for enhancement in QD PVs over wide spectrum in the near-infrared (NIR) region. We find that ray-optical light trapping schemes rather than the nanophotonics approach may be the best solution for enhancing broadband QD PVs by suppressing the escape probability of internal photons without spectral dependency. Based on the theoretical study of diverse schemes for various bandgaps, we apply a V-groove structure and a V-groove textured compound parabolic trapper (VCPT) to PbS-based QD PVs along with the measurement issues for PVs with a light scattering layer. The efficiency of the best device is improved from 10.3% to 11.0% (certified to 10.8%) by a V-groove structure despite the possibility of underestimation caused by light scattering in small-area devices (aperture area: 0.0625 cm2). By minimizing such underestimation, even greater enhancements of 13.6% and 15.6% in short circuit current are demonstrated for finger-type devices (0.167 cm2 without aperture) and large-area devices (2.10 cm2 with an aperture of 0.350 cm2), respectively, using VCPT.

19.
Sci Rep ; 6: 24404, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-27075818

RESUMEN

Non-radiative recombination (NRR) of excited carriers poses a serious challenge to optoelectronic device efficiency. Understanding the mechanism is thus crucial to defect physics and technological applications. Here, by using first-principles calculations, we propose a new NRR mechanism, where excited carriers recombine via a Frenkel-pair (FP) defect formation. While in the ground state the FP is high in energy and is unlikely to form, in the electronic excited states its formation is enabled by a strong electron-phonon coupling of the excited carriers. This NRR mechanism is expected to be general for wide-gap semiconductors, rather than being limited to InGaN-based light emitting devices.

20.
ACS Appl Mater Interfaces ; 8(34): 22151-8, 2016 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-27494649

RESUMEN

We fabricated Cu(In,Ga)Se2 (CIGS) solar cells with a chemical bath deposition (CBD)-ZnS buffer layer grown with varying ammonia concentrations in aqueous solution. The solar cell performance was degraded with increasing ammonia concentration, due to actively dissolved Zn atoms during CBD-ZnS precipitation. These formed interfacial defect states, such as hydroxide species in the CBD-ZnS film, and interstitial and antisite Zn defects at the p-n heterojunction. After light/UV soaking, the CIGS solar cell performance drastically improved, with a rise in fill factor. With the Zn-based buffer layer, the light soaking treatment containing blue photons induced a metastable state and enhanced the CIGS solar cell performance. To interpret this effect, we suggest a band structure model of the p-n heterojunction to explain the flow of photocarriers under white light at the initial state, and then after light/UV soaking. The determining factor is a p+ defect layer, containing an amount of deep acceptor traps, located near the CIGS surface. The p+ defect layer easily captures photoexcited electrons, and then when it becomes quasi-neutral, attracts photoexcited holes. This alters the barrier height and controls the photocurrent at the p-n junction, and fill factor values, determining the solar cell performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA