RESUMEN
Human tissue-resident memory T (TRM) cells play a crucial role in protecting the body from infections and cancers. Recent research observed increased numbers of TRM cells in the lung tissues of idiopathic pulmonary fibrosis patients. However, the functional consequences of TRM cells in pulmonary fibrosis remain unclear. Here, we found that the numbers of TRM cells, especially the CD8+ subset, were increased in the mouse lung with bleomycin-induced pulmonary fibrosis. Increasing or decreasing CD8+ TRM cells in mouse lungs accordingly altered the severity of fibrosis. In addition, the adoptive transfer of CD8+ T cells containing a large number of CD8+ TRM cells from fibrotic lungs was sufficient to induce pulmonary fibrosis in control mice. Treatment with chemokine CC-motif ligand (CCL18) induced CD8+ TRM cell expansion and exacerbated fibrosis, whereas blocking C-C chemokine receptor 8 (CCR8) prevented CD8+ TRM recruitment and inhibited pulmonary fibrosis. In conclusion, CD8+ TRM cells are essential for bleomycin-induced pulmonary fibrosis, and targeting CCL18/CCR8/CD8+ TRM cells may be a potential therapeutic approach. NEW & NOTEWORTHY The role of CD8+ TRM cells in the development of pulmonary fibrosis was validated and studied in the classic model of pulmonary fibrosis. It was proposed for the first time that CCL18 has a chemotactic effect on CD8+ TRM cells, thereby exacerbating pulmonary fibrosis.
Asunto(s)
Bleomicina , Linfocitos T CD8-positivos , Células T de Memoria , Ratones Endogámicos C57BL , Fibrosis Pulmonar , Animales , Bleomicina/toxicidad , Linfocitos T CD8-positivos/inmunología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/inmunología , Fibrosis Pulmonar/patología , Ratones , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Pulmón/patología , Pulmón/inmunología , Pulmón/efectos de los fármacos , Memoria Inmunológica , Masculino , Modelos Animales de Enfermedad , Traslado AdoptivoRESUMEN
BACKGROUND: The alveolar epithelial type II cell (AT2) and its senescence play a pivotal role in alveolar damage and pulmonary fibrosis. Cell circadian rhythm is strongly associated with cell senescence. Differentiated embryonic chondrocyte expressed gene 1 (DEC1) is a very important circadian clock gene. However, the role of DEC1 in AT2 senescence and pulmonary fibrosis was still unclear. RESULTS: In this study, a circadian disruption model of light intervention was used. It was found that circadian disruption exacerbated pulmonary fibrosis in mice. To understand the underlying mechanism, DEC1 levels were investigated. Results showed that DEC1 levels increased in lung tissues of IPF patients and in bleomycin-induced mouse fibrotic lungs. In vitro study revealed that bleomycin and TGF-ß1 increased the expressions of DEC1, collagen-I, and fibronectin in AT2 cells. Inhibition of DEC1 mitigated bleomycin-induced fibrotic changes in vitro and in vivo. After that, cell senescence was observed in bleomycin-treated AT2 cells and mouse models, but these were prevented by DEC1 inhibition. At last, p21 was confirmed having circadian rhythm followed DEC1 in normal conditions. But bleomycin disrupted the circadian rhythm and increased DEC1 which promoted p21 expression, increased p21 mediated AT2 senescence and pulmonary fibrosis. CONCLUSIONS: Taken together, circadian clock protein DEC1 mediated pulmonary fibrosis via p21 and cell senescence in alveolar epithelial type II cells.
Asunto(s)
Bleomicina , Senescencia Celular , Ritmo Circadiano , Fibrosis Pulmonar , Animales , Humanos , Masculino , Ratones , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ritmo Circadiano/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Ratones Endogámicos C57BL , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismoRESUMEN
Acute lung injury (ALI) is characterized by lung vascular endothelial cell (EC) barrier compromise resulting in increased endothelial permeability and pulmonary edema. The infection of gram-negative bacteria that produce toxins like LPS is one of the major causes of ALI. LPS activates Toll-like receptor 4, leading to cytoskeleton reorganization, resulting in lung endothelial barrier disruption and pulmonary edema in ALI. However, the signaling pathways that lead to the cytoskeleton reorganization and lung microvascular EC barrier disruption remain largely unexplored. Here we show that LPS induces calpain activation and talin cleavage into head and rod domains and that inhibition of calpain attenuates talin cleavage, RhoA activation, and pulmonary EC barrier disruption in LPS-treated human lung microvascular ECs in vitro and lung EC barrier disruption and pulmonary edema induced by LPS in ALI in vivo. Moreover, overexpression of calpain causes talin cleavage and RhoA activation, myosin light chain (MLC) phosphorylation, and increases in actin stress fiber formation. Furthermore, knockdown of talin attenuates LPS-induced RhoA activation and MLC phosphorylation and increased stress fiber formation and mitigates LPS-induced lung microvascular endothelial barrier disruption. Additionally, overexpression of talin head and rod domains increases RhoA activation, MLC phosphorylation, and stress fiber formation and enhances lung endothelial barrier disruption. Finally, overexpression of cleavage-resistant talin mutant reduces LPS-induced increases in MLC phosphorylation in human lung microvascular ECs and attenuates LPS-induced lung microvascular endothelial barrier disruption. These results provide the first evidence that calpain mediates LPS-induced lung microvascular endothelial barrier disruption in ALI via cleavage of talin.
Asunto(s)
Lesión Pulmonar Aguda , Edema Pulmonar , Humanos , Lipopolisacáridos/farmacología , Calpaína/metabolismo , Talina/metabolismo , Pulmón/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Permeabilidad CapilarRESUMEN
BACKGROUND: Fine particulate matter (PM2.5) is associated with increased incidence and severity of asthma. PM2.5 exposure disrupts airway epithelial cells, which elicits and sustains PM2.5-induced airway inflammation and remodeling. However, the mechanisms underlying development and exacerbation of PM2.5-induced asthma were still poorly understood. The aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) is a major circadian clock transcriptional activator that is also extensively expressed in peripheral tissues and plays a crucial role in organ and tissue metabolism. RESULTS: In this study, we found PM2.5 aggravated airway remodeling in mouse chronic asthma, and exacerbated asthma manifestation in mouse acute asthma. Next, low BMAL1 expression was found to be crucial for airway remodeling in PM2.5-challenged asthmatic mice. Subsequently, we confirmed that BMAL1 could bind and promote ubiquitination of p53, which can regulate p53 degradation and block its increase under normal conditions. However, PM2.5-induced BMAL1 inhibition resulted in up-regulation of p53 protein in bronchial epithelial cells, then increased-p53 promoted autophagy. Autophagy in bronchial epithelial cells mediated collagen-I synthesis as well as airway remodeling in asthma. CONCLUSIONS: Taken together, our results suggest that BMAL1/p53-mediated bronchial epithelial cell autophagy contributes to PM2.5-aggravated asthma. This study highlights the functional importance of BMAL1-dependent p53 regulation during asthma, and provides a novel mechanistic insight into the therapeutic mechanisms of BMAL1. Video Abstract.
Asunto(s)
Factores de Transcripción ARNTL , Asma , Animales , Ratones , Remodelación de las Vías Aéreas (Respiratorias) , Factores de Transcripción ARNTL/metabolismo , Asma/metabolismo , Autofagia , Células Epiteliales/metabolismo , Material Particulado/toxicidad , Material Particulado/metabolismo , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Idiopathic pulmonary fibrosis (IPF) is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia. It is unknown why fibrosis in IPF distributes in the peripheral or named sub-pleural area. Migration of pleural mesothelial cells (PMC) should contribute to sub-pleural fibrosis. Calpain is known to be involved in cell migration, but the role of calpain in PMC migration has not been investigated. In this study, we found that PMCs migrated into lung parenchyma in patients with IPF. Then using Wt1tm1(EGFP/Cre)Wtp /J knock-in mice, we observed PMC migration into lung parenchyma in bleomycin-induced pleural fibrosis models, and calpain inhibitor attenuated pulmonary fibrosis with prevention of PMC migration. In vitro studies revealed that bleomycin and transforming growth factor-ß1 increased calpain activity in PMCs, and activated calpain-mediated focal adhesion (FA) turnover as well as cell migration, cell proliferation, and collagen-I synthesis. Furthermore, we determined that calpain cleaved FA kinase in both C-terminal and N-terminal regions, which mediated FA turnover. Lastly, the data revealed that activated calpain was also involved in phosphorylation of cofilin-1, and p-cofilin-1 induced PMC migration. Taken together, this study provides evidence that calpain mediates PMC migration into lung parenchyma to promote sub-pleural fibrosis in IPF.
Asunto(s)
Fibrosis Pulmonar Idiopática , Factores Despolimerizantes de la Actina/metabolismo , Animales , Bleomicina/farmacología , Calpaína/metabolismo , Movimiento Celular , Fibrosis , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/patología , Ratones , Factor de Crecimiento Transformador beta1/metabolismoRESUMEN
The distribution of fibrosis in idiopathic pulmonary fibrosis (IPF) is subpleural with basal predominance. Alveolar epithelial cell was considered as the key cell in the initial phase of IPF. However, the idea of activation and damage of alveolar epithelial cells is very difficult to explain why fibrosis distributes in the subpleural area. In this study, human pleural mesothelial cell (PMC) line and primary rat PMC was used as in vitro model. Intraperitoneal injection of bleomycin was used for making a pulmonary fibrosis model. The integrity of cultured monolayer PMCs was determined by transepithelial electric resistance (TEER). Pleural permeability was estimated by measuring paracellular transport of fluorescein isothiocyanate (FITC)-conjugated dextran. Changes in lung tissue of patients with IPF were analyzed by Masson's and immunofluorescence staining. We found bleomycin induced PMCs damage and increased PMCs permeability; increased PMCs permeability aggravated bleomycin-induced subpleural inflammation and pulmonary fibrosis. Moreover, bleomycin was found to activate VEGF/Src signaling which increased PMCs permeability. In vivo, inhibition of VEGF/Src signaling prevented bleomycin-induced subpleural pulmonary fibrosis. At last, activation of VEGF/Src signaling was confirmed in subpleural area in patients with IPF. Taken together, our findings indicate that VEGF/Src signaling mediated pleural barrier damage and increased permeability which contributes to subpleural pulmonary fibrosis.
Asunto(s)
Fibrosis Pulmonar Idiopática/patología , Permeabilidad/efectos de los fármacos , Pleura/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Bleomicina/farmacología , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Epitelio/efectos de los fármacos , Epitelio/patología , Humanos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pleura/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacosRESUMEN
Idiopathic pulmonary fibrosis (IPF) is a fatal fibrosing interstitial lung disease with limited therapeutic options and a median survival of 3 years after diagnosis. Dysregulated epithelial regeneration is key event involved in initiating and sustaining IPF. The type II alveolar epithelial cells (AECIIs) play a crucial role for epithelial regeneration and stabilisation of alveoli. Loss of cell apical-basal polarity contributes to fibrosis. AECII has apical-basal polarity, but it is poorly understood whether AECII apical-basal polarity loss is involved in fibrosis. Bleomycin is a traditional inducer of pulmonary fibrosis. Here firstly we observed that bleomycin induced apical-basal polarity loss in cultured AECIIs. Next, cell polarity proteins lethal (2) giant larvae 1 (Lgl1), PAR-3A, aPKC and PAR-6B were investigated. We found bleomycin induced increases of Lgl1 protein and decreases of PAR-3A protein, and bleomycin-induced PAR-3A depression was mediated by increased-Lgl1. Then Lgl1 siRNA was transfected into AECIIs. Lgl1 siRNA prevented apical-basal polarity loss in bleomycin-treated AECIIs. At last, Lgl1-conditional knockout mice were applied in making animal models. Bleomycin induced pulmonary fibrosis, but this was attenuated in Lgl1-conditional knockout mice. Together, these data indicated that bleomycin mediated AECII apical-basal polarity loss which contributed to experimental pulmonary fibrosis. Inhibition of Lgl1 should be a potential therapeutic strategy for the disease.
Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Bleomicina/farmacología , Polaridad Celular/efectos de los fármacos , Glicoproteínas/genética , Fibrosis Pulmonar/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Polaridad Celular/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Glicoproteínas/antagonistas & inhibidores , Glicoproteínas/metabolismo , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Ratones Noqueados , Cultivo Primario de Células , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/prevención & control , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Transducción de SeñalRESUMEN
Pleural fibrosis is barely reversible and the underlying mechanisms are poorly understood. Pleural mesothelial cells (PMCs) which have apical-basal polarity play a key role in pleural fibrosis. Loss of cell polarity is involved in the development of fibrotic diseases. Partition defective protein (PAR) complex is a key regulator of cell polarity. However, changes of PMC polarity and PAR complex in pleural fibrosis are still unknown. In this study, we observed that PMC polarity was lost in fibrotic pleura. Next we found increased Lethal (2) giant larvae (Lgl) bound with aPKC and PAR-6B competing against PAR-3A in PAR complex, which led to cell polarity loss. Then we demonstrated that Lgl1 siRNA prevented cell polarity loss in PMCs, and Lgl1 conditional knockout (ER-Cre+/-Lgl1flox/flox) attenuated pleural fibrosis in a mouse model. Our data indicated that Lgl1 regulates cell polarity of PMCs, inhibition of Lgl1 and maintenance of cell polarity in PMCs could be a potential therapeutic treatment approach for pleural fibrosis.
Asunto(s)
Células Epiteliales/citología , Glicoproteínas/genética , Glicoproteínas/metabolismo , Pleura/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular , Polaridad Celular , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Femenino , Fibrosis , Técnicas de Inactivación de Genes , Humanos , Masculino , Ratones , Pleura/metabolismo , Proteína Quinasa C/metabolismo , RatasRESUMEN
Pleural fibrosis is associated with various inflammatory processes such as tuberculous pleurisy and bacterial empyema. There is currently no ideal therapeutic to attenuate pleural fibrosis. Some pro-fibrogenic mediators induce fibrosis through inflammatory processes, suggesting that blockage of these mediators might prevent pleural fibrosis. The MeT-5A human pleural mesothelial cell line (PMC) was used in this study as an in vitro model of fibrosis; and intra-pleural injection of bleomycin with carbon particles was used as an in vivo mouse model of pleural fibrosis. Calpain knockout mice, calpain inhibitor (calpeptin), and angiotensin (Ang) II type 1 receptor (AT1R) antagonist (losartan) were evaluated in prevention of experimental pleural fibrosis. We found that bleomycin and carbon particles induced calpain activation in cultured PMCs. This in vitro response was associated with increased collagen-I synthesis, and was blocked by calpain inhibitor or AT1R antagonist. Calpain genetic or treatment with calpeptin or losartan prevented pleural fibrosis in a mouse model induced by bleomycin and carbon particles. Our findings indicate that Ang II signaling and calpain activation induce collagen-I synthesis and contribute to fibrotic alterations in pleural fibrosis. Inhibition of Ang II and calpain might therefore be a novel strategy in treatment of pleural fibrosis.
Asunto(s)
Calpaína/genética , Dipéptidos/farmacología , Losartán/farmacología , Enfermedades Pleurales/tratamiento farmacológico , Angiotensina II/efectos de los fármacos , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Bleomicina/toxicidad , Calpaína/antagonistas & inhibidores , Carbono/toxicidad , Línea Celular , Colágeno Tipo I/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Pleurales/fisiopatologíaRESUMEN
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease that typically leads to respiratory failure and death within 3-5 years of diagnosis. Sub-pleural pulmonary fibrosis is a pathological hallmark of IPF. Bleomycin treatment of mice is a an established pulmonary fibrosis model. We recently showed that bleomycin-induced epithelial-mesenchymal transition (EMT) contributes to pleural mesothelial cell (PMC) migration and sub-pleural pulmonary fibrosis. MicroRNA (miRNA) expression has recently been implicated in the pathogenesis of IPF. However, changes in miRNA expression in PMCs and sub-pleural fibrosis have not been reported. Using cultured PMCs and a pulmonary fibrosis animal model, we found that miR-18a-5p was reduced in PMCs treated with bleomycin and that downregulation of miR-18a-5p contributed to EMT of PMCs. Furthermore, we determined that miR-18a-5p binds to the 3' UTR region of transforming growth factor ß receptor II (TGF-ßRII) mRNA, and this is associated with reduced TGF-ßRII expression and suppression of TGF-ß-Smad2/3 signaling. Overexpression of miR-18a-5p prevented bleomycin-induced EMT of PMC and inhibited bleomycin-induced sub-pleural fibrosis in mice. Taken together, our data indicate that downregulated miR-18a-5p mediates sub-pleural pulmonary fibrosis through upregulation of its target, TGF-ßRII, and that overexpression of miR-18a-5p might therefore provide a novel approach to the treatment of IPF.
Asunto(s)
Regulación de la Expresión Génica , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , MicroARNs/genética , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Receptores de Factores de Crecimiento Transformadores beta/genética , Animales , Bleomicina/farmacología , Gatos , Movimiento Celular/genética , Análisis por Conglomerados , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Ratones , Pleura/metabolismo , Pleura/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/metabolismoRESUMEN
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease of unknown cause that typically leads to respiratory failure and death within 3-5years of diagnosis. TGF-ß1 is considered a major profibrotic factor. However, TGF-ß1 is necessary but not sufficient to the pathogenesis of fibrotic lesion of the lungs. Recent observations have revealed that calpain, a calcium dependent protease, plays a pivotal role in tissue remodeling and fibrosis. However, the mechanism of calpain mediating pulmonary fibrosis is not understood. Calpain conditional knockout (ER-Cre(+/-)capns1(flox/flox)) mice and primary human lung fibroblasts (HLFs) were used here to investigate the relationship between calpain and TGF-ß1. Calpain knockout mice were protected from fibrotic effects of bleomycin. Bleomycin induced increases in TGF-ß1 via calpain activation in HLFs. Moreover, TGF-ß1 also activated calpain. This crosstalk between calpain activation and TGF-ß1 triggered the downstream signaling pathway including TGF-ß1 Smad2/3 and non-Smad (Akt) pathways, as well as collagen-I synthesis. Taken together, our data indicate that the crosstalk between calpain activation and TGF-ß1 augments collagen-I synthesis in HLFs and in pulmonary fibrosis. Intervention in the crosstalk between calpain activation and TGF-ß1 is a novel potential strategy to prevent pulmonary fibrosis.
RESUMEN
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease characterized by the development of subpleural foci of myofibroblasts that contribute to the exuberant fibrosis. Recent studies revealed that pleural mesothelial cells (PMCs) undergo epithelial-mesenchymal transition (EMT) and play a pivotal role in IPF. In animal model, bleomycin induces pulmonary fibrosis exhibiting subpleural fibrosis similar to what is seen in human IPF. It is not known yet whether bleomycin induces EMT in PMCs. In the present study, PMCs were cultured and treated with bleomycin. The protein levels of collagen-I, mesenchymal phenotypic markers (vimentin and α-smooth muscle actin), and epithelial phenotypic markers (cytokeratin-8 and E-cadherin) were measured by Western blot. PMC migration was evaluated using wound-healing assay of culture PMCs in vitro, and in vivo by monitoring the localization of PMC marker, calretinin, in the lung sections of bleomycin-induced lung fibrosis. The results showed that bleomycin induced increases in collagen-I synthesis in PMC. Bleomycin induced significant increases in mesenchymal phenotypic markers and decreases in epithelial phenotypic markers in PMC, and promoted PMC migration in vitro and in vivo. Moreover, TGF-ß1-Smad2/3 signaling pathway involved in the EMT of PMC was demonstrated. Taken together, our results indicate that bleomycin induces characteristic changes of EMT in PMC and the latter contributes to subpleural fibrosis.
Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Bleomicina/toxicidad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Mucosa Respiratoria/efectos de los fármacos , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Epitelio/efectos de los fármacos , Epitelio/patología , Humanos , Pulmón/efectos de los fármacos , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Mucosa Respiratoria/patologíaRESUMEN
Geranylgeranyl diphosphate synthase (GGPPS) is the crucial bottleneck in carotenoid biosynthesis. However, low activity limits the broad application of GGPPS. In this study, OsGGPPS1 in rice was engineered based on ancestral sequence reconstruction (ASR) and semirational design to improve the catalytic performances of existing GGPPS. The better mutant of A22R/A26P with improved enzyme activity was generated based on ASR. Additionally, the improved enzyme activity of mutants as V162A/M218S/F227Y was designed using a semirational design. The combinatorial assembly of the d-OsGGPPS1 mutant (A22R/A26P/V162A/M218S/F227Y) exhibited higher conversion of IPP and each cosubstrate of DMAPP for 9.8-fold in GPP production, GPP for 6.4-fold in FPP production, and FPP for 1.4-fold in GGPP production relative to wild-type OsGGPPS1 at 25 °C, which showed higher conversion than wild-type OsGGPPS1 at temperatures as high as 50 °C. The successful design of OsGGPPS1 was representative of protein engineering, which will shed new light on GGPPS engineering and active plant pigment resource utilization.
Asunto(s)
Farnesiltransferasa , Oryza , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Farnesiltransferasa/genética , Farnesiltransferasa/metabolismo , Farnesiltransferasa/química , Oryza/genética , Oryza/enzimología , Cinética , Ingeniería de Proteínas , BiocatálisisRESUMEN
Background: The relationship between peripheral immune cells and immunoglobulin A nephropathy (IgAN) is widely known; however, causal evidence of this link is lacking. Here, we aimed to determine the causal effect of peripheral immune cells, specifically total white blood cells, lymphocytes, monocytes, basophils, eosinophils, and neutrophils, as well as lymphocyte subset traits, on the IgAN risk using a Mendelian randomization (MR) analysis. Methods: The inverse-variance weighted (IVW) method was used for the primary analysis. We applied three complementary methods, including the weighted median, MR-Egger regression, and MR-PRESSO, to detect and correct for the effect of horizontal pleiotropy. Additionally, we performed a multivariable MR (MVMR) analysis, adjusting for the effects of C-reactive protein (CRP) levels. The roles of specific lymphocyte subtypes and their significance have garnered interest. Bidirectional two-sample MR analysis was performed to test the potential causal relationships between immune traits, including median fluorescence intensities (MFIs) and the relative cell count (AC), and IgAN. Results: The IVW-MR analysis suggested a potential causal relationship between lymphocyte counts and IgAN in Europe (OR per 1-SD increase: 1.43, 95% CI: 1.08-1.88, P = 0.0123). The risk effect of lymphocytes remained even after adjusting for CRP levels using the MVMR method (OR per 1-SD increase: 1.44, 95% CI: 1.05-1.96, P = 0.0210). The other sensitivity analyses showed a consistent trend. The largest GWAS published to date was used for peripheral blood immunophenotyping to explore the potential causal relationship between peripheral immune cell subsets and IgAN. Six AC-IgAN and 14 MFI-IgAN pairs that reached statistical significance (P < 0.05) were detected. Notably, CD3, expressed in eight subsets of T cells, consistently showed a positive correlation with IgAN. The bidirectional MR analysis did not reveal any evidence of reverse causality. According to the sensitivity analysis, horizontal pleiotropy was unlikely to distort the causal estimates. Conclusions: Genetically determined high lymphocyte counts were associated with IgAN, supporting that high lymphocyte counts is causal risk factor for IgAN.
Asunto(s)
Glomerulonefritis por IGA , Análisis de la Aleatorización Mendeliana , Humanos , Glomerulonefritis por IGA/genética , Glomerulonefritis por IGA/inmunología , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido SimpleRESUMEN
Fine particulate matter (PM2.5) has been linked to increased severity and incidence of airway diseases, especially chronic obstructive pulmonary disease (COPD) and asthma. Airway remodeling is an important event in both COPD and asthma, and airway smooth muscle cells (ASMCs) are key cells which directly involved in airway remodeling. However, it was unclear how PM2.5 affected ASMCs. This study investigates the effects of PM2.5 on airway smooth muscle and its mechanism. We first showed that inhaled particulate matter was distributed in the airway smooth muscle bundle, combined with increased airway smooth muscle bundle and collagen deposition in vivo. Then, we demonstrated that PM2.5 induced up-regulation of collagen-I and alpha-smooth muscle actin (α-SMA) expression in rat and human ASMCs in vitro. Next, we found PM2.5 led to rat and human ASMCs senescence and exhibited senescence-associated secretory phenotype (SASP) by autophagy-induced GATA4/TRAF6/NF-κB signaling, which contributed to collagen-I and α-SMA synthesis as well as airway smooth muscle remodeling. Together, our results provided evidence that SASP induced by PM2.5 in airway smooth muscle cells prompted airway remodeling.
Asunto(s)
Asma , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Ratas , Animales , Remodelación de las Vías Aéreas (Respiratorias) , Fenotipo Secretor Asociado a la Senescencia , Miocitos del Músculo Liso , Asma/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Colágeno Tipo I , Proliferación Celular , Material Particulado/metabolismo , Células CultivadasRESUMEN
To evaluate the safety, feasibility, and survival benefit of radiofrequency ablation in liver-only recurrence pancreatic cancer patients after radical pancreatectomy. The data and follow-up of pancreatic cancer patients who suffered liver-only recurrence after radical pancreatectomy from 2015 to 2021 were retrospectively collected. Finally, 19 liver metastases radiofrequency ablation patients were assigned to radiofrequency ablation group, and 41 patients were to systemic treatment group. (1) the baseline, perioperative characteristics, and pathological outcomes were well-balanced. (2) Recurrence pattern showed there were more multiple (> 3) recurrence tumors in systemic treatment patients (multiple one vs. 19, P = 0.005). (3) Median radiofrequency ablation operation time was 30.0 min, median blood loss was 1.0 ml, 4 (21.05%) patients suffered postoperative complications, and 94.74% liver metastases tumors got complete necrosis. The first efficacy evaluation showed a significantly better effect of radiofrequency ablation, complete and partial response rate 72.22% vs. 27.78%, P < 0.001. Overall survival from the initial surgery and after liver recurrence was significantly longer in the radiofrequency ablation group (43.0 vs. 22.0 months, 29.0 vs. 14.0 months, P = 0.003, 0.006, respectively). Progression-free survival after treatment was longer in the radiofrequency ablation group (6.0 vs. 5.0 months, P = 0.029). For liver recurrence tumor ≤ 3, overall survival from the initial surgery and after liver recurrence was significantly longer in radiofrequency ablation patients (43.0 vs. 22.0 months, 29.0 vs. 14.0 months, P = 0.011, 0.013, respectively). Progression-free survival after treatment was longer in the radiofrequency ablation group (7.0 vs. 4.0 months, P = 0.042). Radiofrequency ablation could get a curative purpose for patients with liver-only recurrence after pancreatectomy, improve progression-free survival and overall survival, and with minor surgery damage and risk.
Asunto(s)
Ablación por Catéter , Neoplasias Hepáticas , Neoplasias Pancreáticas , Ablación por Radiofrecuencia , Humanos , Pancreatectomía , Estudios Retrospectivos , Recurrencia Local de Neoplasia/cirugía , Neoplasias Hepáticas/patología , Neoplasias Pancreáticas/cirugía , Neoplasias Pancreáticas/patología , Resultado del Tratamiento , Neoplasias PancreáticasRESUMEN
Background: Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible fibrotic disease with high mortality. Currently, pirfenidone and nintedanib are the only approved drugs for IPF by the U.S. Food and Drug Administration (FDA), but their efficacy is limited. The activation of multiple phosphotyrosine (pY) mediated signaling pathways underlying the pathological mechanism of IPF has been explored. A Src homology-2 (SH2) superbinder, which contains mutations of three amino acids (AAs) of natural SH2 domain has been shown to be able to block phosphotyrosine (pY) pathway. Therefore, we aimed to introduce SH2 superbinder into the treatment of IPF. Methods: We analyzed the database of IPF patients and examined pY levels in lung tissues from IPF patients. In primary lung fibroblasts obtained from IPF patient as well as bleomycin (BLM) treated mice, the cell proliferation, migration and differentiation associated with pY were investigated and the anti-fibrotic effect of SH2 superbinder was also tested. In vivo, we further verified the safety and effectiveness of SH2 superbinder in multiple BLM mice models. We also compared the anti-fibrotic effect and side-effect of SH2 superbinder and nintedanib in vivo. Results: The data showed that the cytokines and growth factors pathways which directly correlated to pY levels were significantly enriched in IPF. High pY levels were found to induce abnormal proliferation, migration and differentiation of lung fibroblasts. SH2 superbinder blocked pY-mediated signaling pathways and suppress pulmonary fibrosis by targeting high pY levels in fibroblasts. SH2 superbinder had better therapeutic effect and less side-effect compare to nintedanib in vivo. Conclusions: SH2 superbinder had significant anti-fibrotic effects both in vitro and in vivo, which could be used as a promising therapy for IPF.
Asunto(s)
Fibrosis Pulmonar Idiopática , Animales , Bleomicina/farmacología , Proliferación Celular , Fibroblastos/metabolismo , Fibrosis , Fibrosis Pulmonar Idiopática/metabolismo , Ratones , Fosfotirosina/química , Fosfotirosina/metabolismo , Fosfotirosina/farmacologíaRESUMEN
Pleural fibrosis is defined as an excessive deposition of extracellular matrix that results in destruction of the normal pleural tissue architecture and compromised function. Tuberculous pleurisy, asbestos injury, and rheumatoid pleurisy are main causes of pleural fibrosis. Pleural mesothelial cells (PMCs) play a key role in pleural fibrosis. However, detailed mechanisms are poorly understood. Serine/arginine-rich protein SRSF6 belongs to a family of highly conserved RNA-binding splicing-factor proteins. Based on its known functions, SRSF6 should be expected to play a role in fibrotic diseases. However, the role of SRSF6 in pleural fibrosis remains unknown. In this study, SRSF6 protein was found to be increased in cells of tuberculous pleural effusions (TBPE) from patients, and decellularized TBPE, bleomycin, and TGF-ß1 were confirmed to increase SRSF6 levels in PMCs. In vitro, SRSF6 mediated PMC proliferation and synthesis of the main fibrotic protein COL1A2. In vivo, SRSF6 inhibition prevented mouse experimental pleural fibrosis. Finally, activated SMAD2/3, increased SOX4, and depressed miRNA-506-3p were associated with SRSF6 upregulation in PMCs. These observations support a model in which SRSF6 induces pleural fibrosis through a cluster pathway, including SRSF6/WNT5A and SRSF6/SMAD1/5/9 signaling. In conclusion, we propose inhibition of the splicing factor SRSF6 as a strategy for treatment of pleural fibrosis.
Asunto(s)
Fibrosis/metabolismo , Fosfoproteínas , Pleura/metabolismo , Enfermedades Pleurales/metabolismo , Factores de Empalme Serina-Arginina , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Transducción de SeñalRESUMEN
Purpose: To examine cerebral cortical activation differences in the frontal cortex and parietal lobe during the performance of two types of dumbbell exercise. Methods: A total of 22 young healthy male adults (mean age, 23.8 ± 2.05 years; height, 1.75 ± 0.06 m; weight, 71.4 ± 8.80 kg) participated in a crossover design study that involved two experimental exercise conditions: momentum dumbbell and conventional dumbbell. Performance tasks included 10, 10-s sets of single-arm dumbbell exercise, with a rest interval of 60 s between sets and a 5-min washout period between conditions. The primary outcome was the cerebral concentrations of oxygenated hemoglobin (HbO2) in the frontal cortex and parietal lobe assessed during performance of both exercises using functional near-infrared spectroscopy (fNIRS). The secondary outcome was upper-limb muscle activation measured using surface electromyography (sEMG). Outcome data were ascertained during exercise. Results: A significant between-condition difference in HbO2 was observed in the frontal and parietal regions with an increase in HbO2 during momentum, relative to conventional, dumbbell exercise (p < 0.05). Compared to conventional dumbbell exercise, performing a momentum dumbbell exercise led to a higher level of muscle activation in the anterior and posterior deltoids of the upper arm and in the flexor carpi radialis and extensor carpi radialis longus of the forearm (p < 0.05). However, no between-condition differences were found in the biceps and triceps brachii (p > 0.05). Conclusion: Dynamic, compared with conventional, dumbbell exercise resulted in higher hemodynamic responses and greater upper-limb muscle activation in young healthy adults. The findings of this study showed differential cortical hemodynamic responses during performance of the two types of dumbbell exercise with a higher activation level produced during momentum-based dumbbell exercise.
RESUMEN
Idiopathic pulmonary fibrosis (IPF) is a specific form of chronic, progressive and fibrosing interstitial pneumonia of unknown cause. The main feature of IPF is a heterogeneous appearance with areas of sub-pleural fibrosis. However, the mechanism of sub-pleural fibrosis was poorly understood. In this study, our in vivo study revealed that pleural mesothelial cells (PMCs) migrated into lung parenchyma and localized alongside lung fibroblasts in sub-pleural area in mouse pulmonary fibrosis. Our in vitro study displayed that cultured-PMCs-medium induced lung fibroblasts transforming into myofibroblast, cultured-fibroblasts-medium promoted mesothelial-mesenchymal transition of PMCs. Furthermore, these changes in lung fibroblasts and PMCs were prevented by blocking TGF-ß1/Smad2/3 signaling with SB431542. TGF-ß1 neutralized antibody attenuated bleomycin-induced pulmonary fibrosis. Similar to TGF-ß1/Smad2/3 signaling, wnt/ß-catenin signaling was also activated in the process of PMCs crosstalk with lung fibroblasts. Moreover, inhibition of CD147 attenuated cultured-PMCs-medium induced collagen-I synthesis in lung fibroblasts. Blocking CD147 signaling also prevented bleomycin-induced pulmonary fibrosis. Our data indicated that crosstalk between PMC and lung fibroblast contributed to sub-pleural pulmonary fibrosis. TGF-ß1, Wnt/ß-catenin and CD147 signaling was involved in the underling mechanism.