Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(2)2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31936069

RESUMEN

A miniature piezoresistive pressure sensor fabricated by temporary bonding technology was reported in this paper. The sensing membrane was formed on the device layer of an SOI (Silicon-On-Insulator) wafer, which was bonded to borosilicate glass (Borofloat 33, BF33) wafer for supporting before releasing with Cu-Cu bonding after boron doping and electrode patterning. The handle layer was bonded to another BF33 wafer after thinning and etching. Finally, the substrate BF33 wafer was thinned by chemical mechanical polishing (CMP) to reduce the total device thickness. The copper temporary bonding layer was removed by acid solution after dicing to release the sensing membrane. The chip area of the fabricated pressure sensor was of 1600 µm × 650 µm × 104 µm, and the size of a sensing membrane was of 100 µm × 100 µm × 2 µm. A higher sensitivity of 36 µV/(V∙kPa) in the range of 0-180 kPa was obtained. By further reducing the width, the fabricated miniature pressure sensor could be easily mounted in a medical catheter for the blood pressure measurement.

2.
Materials (Basel) ; 14(8)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924108

RESUMEN

Thermoelectric technology can achieve mutual conversion between thermoelectricity and has the unique advantages of quiet operation, zero emissions and long life, all of which can help overcome the energy crisis. However, the large-scale application of thermoelectric technology is limited by its lower thermoelectric performance factor (ZT). The thermoelectric performance factor is a function of the Seebeck coefficient, electrical conductivity, thermal conductivity and absolute temperature. Since these parameters are interdependent, increasing the ZT value has always been a challenge. Here, we report the growth of Cu2Se thin films with a thickness of around 100 nm by magnetron sputtering. XRD and TEM analysis shows that the film is low-temperature α-Cu2Se, XPS analysis shows that about 10% of the film's surface is oxidized, and the ratio of copper to selenium is 2.26:1. In the range of 300-400 K, the maximum conductivity of the film is 4.55 × 105 S m-1, which is the maximum value reached by the current Cu2Se film. The corresponding Seebeck coefficient is between 15 and 30 µV K-1, and the maximum ZT value is 0.073. This work systematically studies the characterization of thin films and the measurement of thermoelectric properties and lays the foundation for further research on nano-thin-film thermoelectrics.

3.
Micromachines (Basel) ; 12(6)2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205469

RESUMEN

MEMS/NEMS resonators are widely studied in biological detection, physical sensing, and quantum coupling. This paper reviews the latest research progress of MEMS/NEMS resonators with different structures. The resonance performance, new test method, and manufacturing process of single or double-clamped resonators, and their applications in mass sensing, micromechanical thermal analysis, quantum detection, and oscillators are introduced in detail. The material properties, resonance mode, and application in different fields such as gyroscope of the hemispherical structure, microdisk structure, drum resonator are reviewed. Furthermore, the working principles and sensing methods of the surface acoustic wave and bulk acoustic wave resonators and their new applications such as humidity sensing and fast spin control are discussed. The structure and resonance performance of tuning forks are summarized. This article aims to classify resonators according to different structures and summarize the working principles, resonance performance, and applications.

4.
Nanoscale Res Lett ; 16(1): 15, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33475898

RESUMEN

GaAs nanostructures have attracted more and more attention due to its excellent properties such as increasing photon absorption. The fabrication process on GaAs substrate was rarely reported, and most of the preparation processes are complex. Here, we report a black GaAs fabrication process using a simple inductively coupled plasma etching process, with no extra lithography process. The fabricated sample has a low reflectance value, close to zero. Besides, the black GaAs also displayed hydrophobic property, with a water contact angle of 125°. This kind of black GaAs etching process could be added to the fabrication workflow of photodetectors and solar cell devices to further improve their characteristics.

5.
Micromachines (Basel) ; 11(1)2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31906297

RESUMEN

Miniature Microelectromechanical Systems (MEMS) pressure sensors possess various merits, such as low power consumption, being lightweight, having a small volume, accurate measurement in a space-limited region, low cost, little influence on the objects being detected. Accurate blood pressure has been frequently required for medical diagnosis. Miniature pressure sensors could directly measure the blood pressure and fluctuation in blood vessels with an inner diameter from 200 to 1000 m. Glaucoma is a group of eye diseases usually resulting from abnormal intraocular pressure. The implantable pressure sensor for real-time inspection would keep the disease from worsening; meanwhile, these small devices could alleviate the discomfort of patients. In addition to medical applications, miniature pressure sensors have also been used in the aerospace, industrial, and consumer electronics fields. To clearly illustrate the "miniature size", this paper focuses on miniature pressure sensors with an overall size of less than 2 mm × 2 mm or a pressure sensitive diaphragm area of less than 1 mm × 1 mm. In this paper, firstly, the working principles of several types of pressure sensors are briefly introduced. Secondly, the miniaturization with the development of the semiconductor processing technology is discussed. Thirdly, the sizes, performances, manufacturing processes, structures, and materials of small pressure sensors used in the different fields are explained in detail, especially in the medical field. Fourthly, problems encountered in the miniaturization of miniature pressure sensors are analyzed and possible solutions proposed. Finally, the probable development directions of miniature pressure sensors in the future are discussed.

6.
Nanoscale ; 11(42): 20194-20198, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31617548

RESUMEN

Here, we propose a novel nanotip microstructure which can be easily fabricated through a simply Reactive Ion Etching (RIE) process combined with anodic aluminum oxide (AAO) membranes. When combined with Ag coating and annealing on the surface of micro-sized nanotip arrays, the as-formed Ag-nanoparticles (Ag-NPs)/Si-nanotip hybrid structure exhibited a significantly high enhancement factor and highly sensitive surface enhanced Raman scattering (SERS) for rhodamine 6G molecules. The nanotip microstructure showed a sharp curvature with an apex diameter which significantly affected the SERS results. The Ag-NPs/Si-nanotip hybrid structure verified a very prominent "hot spot" effect that exists around the nanotip structures, which contributed mainly to an enhanced SERS signal with an enhancement factor (EF) of 1.6 × 106. Moreover, the Ag-NPs/Si-nanotip hybrid structure demonstrated superior sensitivity, with obvious featured Raman peaks even when the concentration was as low as 10-10 M. Our work demonstrated a feasible way to prepare a novel nanotip microstructure with a highly localized surface plasmon resonance response which could be feasibly applied for highly sensitive and reproducible SERS applications.

7.
Nanomaterials (Basel) ; 9(12)2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31888222

RESUMEN

Micro/nano structures have unique optical, electrical, magnetic, and thermal properties. Studies on the preparation of micro/nano structures are of considerable research value and broad development prospects. Several micro/nano structure preparation techniques have already been developed, such as photolithography, electron beam lithography, focused ion beam techniques, nanoimprint techniques. However, the available geometries directly implemented by those means are limited to the 2D mode. Laser machining, a new technology for micro/nano structural preparation, has received great attention in recent years for its wide application to almost all types of materials through a scalable, one-step method, and its unique 3D processing capabilities, high manufacturing resolution and high designability. In addition, micro/nano structures prepared by laser machining have a wide range of applications in photonics, Surface plasma resonance, optoelectronics, biochemical sensing, micro/nanofluidics, photofluidics, biomedical, and associated fields. In this paper, updated achievements of laser-assisted fabrication of micro/nano structures are reviewed and summarized. It focuses on the researchers' findings, and analyzes materials, morphology, possible applications and laser machining of micro/nano structures in detail. Seven kinds of materials are generalized, including metal, organics or polymers, semiconductors, glass, oxides, carbon materials, and piezoelectric materials. In the end, further prospects to the future of laser machining are proposed.

8.
Nanoscale Res Lett ; 13(1): 332, 2018 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-30353230

RESUMEN

As three-dimensional (3D) nanostructures can significantly improve the absorption capacity of photons, it is widely used in various photovoltaic devices. However, the high-cost and complex preparation process of traditional 3D nanostructures restricted its development greatly. In this paper, a new type of nanocone cluster microstructure was prepared on polydimethylsiloxane (PDMS) substrate by using a simple template process. This novel nanocone cluster microstructure can significantly improve the light transmittance and reduce the light reflection, showing superior anti-reflection property. In the whole range of visible band, the nanocone cluster microstructure effectively reduces the reflectivity of the light, so that it remains below 3.5%. In addition, this kind of cluster microstructure showed excellent superhydrophobic property and self-cleaning ability with the contact angle of 151°.

9.
Nanomaterials (Basel) ; 8(6)2018 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-29891767

RESUMEN

With high power density, fast charging-discharging speed, and a long cycling life, supercapacitors are a kind of highly developed novel energy-storage device that has shown a growing performance and various unconventional shapes such as flexible, linear-type, stretchable, self-healing, etc. Here, we proposed a rational design of thin film, flexible micro-supercapacitors with in-plane interdigital electrodes, where the electrodes were fabricated using the oblique angle deposition technique to grow oblique Ni/NiO nanowire arrays directly on polyimide film. The obtained electrodes have a high specific surface area and good adhesion to the substrate compared with other in-plane micro-supercapacitors. Meanwhile, the as-fabricated micro-supercapacitors have good flexibility and satisfactory energy-storage performance, exhibiting a high specific capacity of 37.1 F/cm³, a high energy density of 5.14 mWh/cm³, a power density of up to 0.5 W/cm³, and good stability during charge-discharge cycles and repeated bending-recovery cycles, respectively. Our micro-supercapacitors can be used as ingenious energy storage devices for future portable and wearable electronic applications.

10.
Nanomaterials (Basel) ; 8(2)2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29385759

RESUMEN

Heavily boron-doped silicon layers and boron etch-stop techniques have been widely used in the fabrication of microelectromechanical systems (MEMS). This paper provides an introduction to the fabrication process of nanoscale silicon thermoelectric devices. Low-dimensional structures such as silicon nanowire (SiNW) have been considered as a promising alternative for thermoelectric applications in order to achieve a higher thermoelectric figure of merit (ZT) than bulk silicon. Here, heavily boron-doped silicon layers and boron etch-stop processes for the fabrication of suspended SiNWs will be discussed in detail, including boron diffusion, electron beam lithography, inductively coupled plasma (ICP) etching and tetramethylammonium hydroxide (TMAH) etch-stop processes. A 7 µm long nanowire structure with a height of 280 nm and a width of 55 nm was achieved, indicating that the proposed technique is useful for nanoscale fabrication. Furthermore, a SiNW thermoelectric device has also been demonstrated, and its performance shows an obvious reduction in thermal conductivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA