Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Entropy (Basel) ; 23(11)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34828235

RESUMEN

In order to improve the accuracy of manipulator operation, it is necessary to install a tactile sensor on the manipulator to obtain tactile information and accurately classify a target. However, with the increase in the uncertainty and complexity of tactile sensing data characteristics, and the continuous development of tactile sensors, typical machine-learning algorithms often cannot solve the problem of target classification of pure tactile data. Here, we propose a new model by combining a convolutional neural network and a residual network, named ResNet10-v1. We optimized the convolutional kernel, hyperparameters, and loss function of the model, and further improved the accuracy of target classification through the K-means clustering method. We verified the feasibility and effectiveness of the proposed method through a large number of experiments. We expect to further improve the generalization ability of this method and provide an important reference for the research in the field of tactile perception classification.

2.
Entropy (Basel) ; 23(9)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34573832

RESUMEN

Robot manipulator trajectory planning is one of the core robot technologies, and the design of controllers can improve the trajectory accuracy of manipulators. However, most of the controllers designed at this stage have not been able to effectively solve the nonlinearity and uncertainty problems of the high degree of freedom manipulators. In order to overcome these problems and improve the trajectory performance of the high degree of freedom manipulators, a manipulator trajectory planning method based on a radial basis function (RBF) neural network is proposed in this work. Firstly, a 6-DOF robot experimental platform was designed and built. Secondly, the overall manipulator trajectory planning framework was designed, which included manipulator kinematics and dynamics and a quintic polynomial interpolation algorithm. Then, an adaptive robust controller based on an RBF neural network was designed to deal with the nonlinearity and uncertainty problems, and Lyapunov theory was used to ensure the stability of the manipulator control system and the convergence of the tracking error. Finally, to test the method, a simulation and experiment were carried out. The simulation results showed that the proposed method improved the response and tracking performance to a certain extent, reduced the adjustment time and chattering, and ensured the smooth operation of the manipulator in the course of trajectory planning. The experimental results verified the effectiveness and feasibility of the method proposed in this paper.

3.
Micromachines (Basel) ; 13(11)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36422429

RESUMEN

The development of Internet of Things (IoT) technology has enabled intelligent robots to have more sensing and decision-making capabilities, broadening the application areas of robots. Grasping operation is one of the basic tasks of intelligent robots, and vision-based robot grasping technology can enable robots to perform dexterous grasping. Compared with 2D images, 3D point clouds based on objects can generate more reasonable and stable grasping poses. In this paper, we propose a new algorithm structure based on the PointNet network to process object point cloud information. First, we use the T-Net network to align the point cloud to ensure its rotation invariance; then we use a multilayer perceptron to extract point cloud characteristics and use the symmetric function to get global features, while adding the point cloud characteristics attention mechanism to make the network more focused on the object local point cloud. Finally, a grasp quality evaluation network is proposed to evaluate the quality of the generated candidate grasp positions, and the grasp with the highest score is obtained. A grasping dataset is generated based on the YCB dataset to train the proposed network, which achieves excellent classification accuracy. The actual grasping experiments are carried out using the Baxter robot and compared with the existing methods; the proposed method achieves good grasping effect.

4.
Micromachines (Basel) ; 12(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34832685

RESUMEN

In the industrial field, the anthropomorphism of grasping robots is the trend of future development, however, the basic vision technology adopted by the grasping robot at this stage has problems such as inaccurate positioning and low recognition efficiency. Based on this practical problem, in order to achieve more accurate positioning and recognition of objects, an object detection method for grasping robot based on improved YOLOv5 was proposed in this paper. Firstly, the robot object detection platform was designed, and the wooden block image data set is being proposed. Secondly, the Eye-In-Hand calibration method was used to obtain the relative three-dimensional pose of the object. Then the network pruning method was used to optimize the YOLOv5 model from the two dimensions of network depth and network width. Finally, the hyper parameter optimization was carried out. The simulation results show that the improved YOLOv5 network proposed in this paper has better object detection performance. The specific performance is that the recognition precision, recall, mAP value and F1 score are 99.35%, 99.38%, 99.43% and 99.41% respectively. Compared with the original YOLOv5s, YOLOv5m and YOLOv5l models, the mAP of the YOLOv5_ours model has increased by 1.12%, 1.2% and 1.27%, respectively, and the scale of the model has been reduced by 10.71%, 70.93% and 86.84%, respectively. The object detection experiment has verified the feasibility of the method proposed in this paper.

5.
Comput Intell Neurosci ; 2021: 8025730, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630554

RESUMEN

The purpose of mobile robot path planning is to produce the optimal safe path. However, mobile robots have poor real-time obstacle avoidance in local path planning and longer paths in global path planning. In order to improve the accuracy of real-time obstacle avoidance prediction of local path planning, shorten the path length of global path planning, reduce the path planning time, and then obtain a better safe path, we propose a real-time obstacle avoidance decision model based on machine learning (ML) algorithms, an improved smooth rapidly exploring random tree (S-RRT) algorithm, and an improved hybrid genetic algorithm-ant colony optimization (HGA-ACO). Firstly, in local path planning, the machine learning algorithms are used to train the datasets, the real-time obstacle avoidance decision model is established, and cross validation is performed. Secondly, in global path planning, the greedy algorithm idea and B-spline curve are introduced into the RRT algorithm, redundant nodes are removed, and the reverse iteration is performed to generate a smooth path. Then, in path planning, the fitness function and genetic operation method of genetic algorithm are optimized, the pheromone update strategy and deadlock elimination strategy of ant colony algorithm are optimized, and the genetic-ant colony fusion strategy is used to fuse the two algorithms. Finally, the optimized path planning algorithm is used for simulation experiment. Comparative simulation experiments show that the random forest has the highest real-time obstacle avoidance prediction accuracy in local path planning, and the S-RRT algorithm can effectively shorten the total path length generated by the RRT algorithm in global path planning. The HGA-ACO algorithm can reduce the iteration number reasonably, reduce the search time effectively, and obtain the optimal solution in path planning.


Asunto(s)
Robótica , Algoritmos , Simulación por Computador , Aprendizaje Automático , Feromonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA