Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Plant Physiol ; 274: 153719, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35598433

RESUMEN

Floral transition is an important process in plant development, which is regulated by at least four flowering pathways: the photoperiod, vernalization, autonomous, and gibberellin (GA)-dependent pathways. The DnaJ-like zinc finger domain-containing protein ORANGE (OR) was originally cloned from the cauliflower or mutant, which has distinct phenotypes of the carotenoid-accumulating curd, the elongated petioles, and the delayed-flowering time. OR has been demonstrated to interact with phytoene synthase for carotenoid biosynthesis in plastids and with eukaryotic release factor 1-2 (eRF1-2) in the nucleus for the first two phenotypes, respectively. In this study, we showed that overexpression of OR in Arabidopsis thaliana resulted in a delayed-flowering phenotype resembling the cauliflower or mutant. Our results indicated that OR negatively regulates the expression of the flowering integrator genes FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1). Both GA3 and vernalization treatments could not rescue the delayed-flowering phenotype of the OR-overexpressing seedlings, suggesting the repression of floral transition by OR does not depend on SOC1-mediated vernalization or GA-dependent pathways. Moreover, our analysis revealed that transcripts of OR and FT fluctuated in opposite directions diurnally, and the overexpression of OR repressed the accumulation of CONSTANS (CO), FT, and SOC1 transcripts in a 16 h/8 h light/dark long-day cycle. Our results indicated the possibility that OR represses flowering through the CO-FT-SOC1-mediated photoperiodic flowering pathway.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Carotenoides/metabolismo , Flores , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Fotoperiodo
2.
Antioxidants (Basel) ; 11(11)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36421431

RESUMEN

Carotenoids are not only photosynthetic and photoprotective pigments in plants, but also essential antioxidative nutrients for human health. The fruit is the main plant organ that synthesizes and sequestrates carotenoids. Fruit ripening is a complicated developmental process, during which the rewiring of the metabolic network is tightly coordinated with the re-organization of cellular and organellular structures. Chili pepper (Capsicum annuum) is one of the major crops that accumulates a distinct level of carotenoids, especially capsanthin, in their ripened fruits. To elucidate how different metabolic and developmental scenarios are regulated in ripening chili pepper fruits, we analyzed the carotenoid profiles and transcriptomes of fruits at different ripening stages. Our pigment analysis indicated an opposite correlation between the contents of carotenoid species with ß,ß-structures (e.g., ß-carotene, zeaxanthin, and capsanthin) and of lutein with the ß,ε-structure, whereas lutein displayed a high correlation with chlorophylls during ripening. From the chili pepper Zunla-1 genome, a full repertoire of 38 homologous genes encoding enzymes in the carotenoid biosynthetic pathway was identified. The fluctuations in their transcript abundances during ripening suggested different involvement of these genes in the regulation of carotenoid biosynthesis. We further searched genes of which the expression showed high correlations with the accumulation of ß-carotene during the ripening process. Moreover, from the transcriptomic analysis, a total of 17 transcription factors that co-expressed with different groups of carotenoid biosynthetic genes were identified.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA