Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Genomics ; 116(5): 110890, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38909906

RESUMEN

Previous studies have presented evidence suggesting that altitude exerts detrimental effects on reproductive processes, yet the underlying mechanism remains elusive. Our study employed two distinct goat breeds inhabiting low and high altitudes, and conducted a comparative analysis of mRNA profiles in testis tissues and the composition of gut microbiota. The results revealed a reduced testis size in high-altitude goats. RNA-seq analysis identified the presence of 214 differentially expressed genes (DEGs) in the testis. These DEGs resulted in a weakened immunosuppressive effect, ultimately impairing spermatogenesis in high-altitude goats. Additionally, 16S rDNA amplicon sequencing recognized statistically significant variations in the abundance of the genera Treponema, unidentified_Oscillospiraceae, Desulfovibrio, Butyricicoccus, Dorea, Parabacteroides between the two groups. The collective evidence demonstrated the gut and testis played a synergistic role in causing decreased fertility at high altitudes. Our research provides a theoretical basis for future investigations into the reproductive fitness of male goats.

2.
BMC Genomics ; 25(1): 258, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454325

RESUMEN

The interactions between the rumen microbiota and the host are crucial for the digestive and absorptive processes of ruminants, and they are heavily influenced by the climatic conditions of their habitat. Owing to the harsh conditions of the high-altitude habitat, little is known about how ruminants regulate the host transcriptome and the composition of their rumen microbiota. Using the model species of goats, we examined the variations in the rumen microbiota, transcriptome regulation, and climate of the environment between high altitude (Lhasa, Xizang; 3650 m) and low altitude (Chengdu, Sichuan, China; 500 m) goats. The results of 16 S rRNA sequencing revealed variations in the abundance, diversity, and composition of rumen microbiota. Papillibacter, Quinella, and Saccharofermentans were chosen as potential microbes for the adaptation of Xizang goats to the harsh climate of the plateau by the Spearman correlation study of climate and microbiota. Based on rumen transcriptome sequencing analysis, 244 genes were found to be differentially expressed between Xizang goats and low-altitude goats, with 127 genes showing up-regulation and 117 genes showing down-regulation. SLC26A9, GPX3, ARRDC4, and COX1 were identified as potential candidates for plateau adaptation in Xizang goats. Moreover, the metabolism of fatty acids, arachidonic acids, pathway involving cytokines and their receptors could be essential for adaptation to plateau hypoxia and cold endurance. The expression of GPX3, a gene linked to plateau acclimatization in Xizang goats, was linked to the abundance of Anaerovibrio, and the expression of SLC26A9 was linked to the quantity of Selenomonas, according to ruminal microbiota and host Spearman correlation analysis. Our findings imply that in order to adapt harsh plateau conditions, Xizang goats have evolved to maximize digestion and absorption as well as to have a rumen microbiota suitable for the composition of their diet.


Asunto(s)
Cabras , Microbiota , Animales , Cabras/metabolismo , Transcriptoma , Rumen/metabolismo , Microbiota/genética , Adaptación Psicológica
3.
Biochem Biophys Res Commun ; 727: 150319, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38963983

RESUMEN

Castration promotes subcutaneous fat deposition that may be associated with metabolic adaptations in the liver. However, fatty acid composition, abundance, and metabolic characteristics of the liver after castration are not fully understood. Our results showed that surgical castration significantly reduced water and food intake, reduced liver weight, and induced liver inflammation in mice. Transcriptome analyses revealed that castration enhanced fatty acid metabolism, particularly that of arachidonic and linoleic acids metabolism. Gas chromatography-mass spectrometry analysis revealed that castration altered the composition and relative abundance of fatty acids in the liver. The relative abundances of arachidonic and linoleic acids were significantly decreased in 4-week-old castrated mice. Analysis of fatty acid synthesis- and metabolism-related genes revealed that castration enhanced the transcription of fatty acid synthesis- and oxidation-related genes. Analyzing the level of key enzymes in the ß-oxidation and tricarboxylic acid cycle pathways of fatty acids in mitochondria, we found that castration enhanced the ß-oxidation of fatty acids in mitochondria, and also enhanced the protein level of the rate-limiting enzyme in the tricarboxylic acid cycle pathway, isocitrate dehydrogenase 2. These results comprehensively clarify metabolic changes in liver fatty acids after castration in mice of different ages and provide a reference for understanding castration-induced fat deposition from the perspective of liver fatty acid metabolism in male mice.

4.
Gen Comp Endocrinol ; 348: 114448, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38191062

RESUMEN

The thymus is an energy-consuming organ, and its metabolism changes with atrophy. Testosterone regulates thymus remodeling (atrophy and regeneration). However, the characteristics of the energy metabolism during testosterone-mediated thymic atrophy and regeneration remain unclear. In this study, we demonstrated that testosterone ablation (implemented by immunocastration and surgical castration) induced global metabolic changes in the thymus. Kyoto Encyclopedia of Genes and Genomes pathway enrichment for differential metabolites and metabolite set enrichment analysis for total metabolites revealed that testosterone ablation affected thymic glycolysis, glutamate metabolism, and fatty acid ß-oxidation. Testosterone ablation-induced thymic regeneration was accompanied by attenuated glycolysis and glutamate metabolism and changed fatty acid composition and content. Testosterone supplementation in immunocastrated and surgically castrated rats enhanced glutaminolysis, reduced the level of unsaturated fatty acids, enhanced the ß-oxidation of unsaturated fatty acids in the mitochondria, boosted the tricarboxylic acid (TCA) cycle, and accelerated thymic atrophy. Overall, these results imply that metabolic reprogramming is directly related to thymic remodeling.


Asunto(s)
Reprogramación Metabólica , Testosterona , Ratas , Animales , Masculino , Testosterona/metabolismo , Timo , Orquiectomía , Ácidos Grasos Insaturados/metabolismo , Atrofia/metabolismo , Ácidos Grasos/metabolismo , Glutamatos/metabolismo
5.
Reprod Domest Anim ; 58(9): 1179-1187, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37492901

RESUMEN

The hypothalamic-pituitary-gonadal (HPG) axis connects the hypothalamus, pituitary gland, and gonads. The regulation of reproductive processes includes integrating various factors from structural functions and environmental conditions in the HPG axis, with the outcome indication of these processes being the pulsatile secretion of gonadotropin-releasing hormone (GnRH) from the hypothalamus. These factors include feed consumption and nutritional condition, sex steroids, season/photoperiod, pheromones, age, and stress. GnRH pulsatile secretion affects the pattern of gonadotropin secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which then regulates both endocrine function and gamete maturation in the gonads. This regulates gonadotropins and testosterone (T) production. There is evidence that in males, GnRH participates in a variety of host behavioural and physiological processes such as the release of reproductive hormones, progression of spermatogenesis and sperm function, aggressive behaviour, and physiological metabolism. GnRH activates receptors expressed on Leydig cells and Sertoli cells, respectively to stimulate T secretion and spermatogenesis in the testis. Photoperiod affects the reproductive system of the hypothalamic-pituitary axis via rhythmic diurnal melatonin secretion. Increased release of melatonin promotes sexual activity, GnRH production, LH stimulation, and T production. This induces testicular functions, spermatogenesis, and puberty. GnRH reduces the release of LH by the pituitary through the cascade effect and decreases plasma concentration of T. Gut microbiota maintain sex steroid homeostasis and may induce reduction in reproduction productivity. Recently, findings of kisspeptin-neurokinin-dynorphin neuronal network in the brain have resulted in fast advances in how GnRH secretion is controlled. Emerging studies have also indicated that other neuropeptide analogues could be used in control reproduction procedures in various goat and sheep breeds. The Tibetan male sheep and goats reproduce on a seasonal basis and have high reproductive performance. This is a review for the role of GnRH in Tibetan male sheep and goats reproduction. This is intended to enhance reproductive knowledge for understanding the key roles of GnRH relating to male reproductive efficiency of Tibetan sheep or goats.


Asunto(s)
Hormona Liberadora de Gonadotropina , Melatonina , Masculino , Animales , Ovinos , Hormona Liberadora de Gonadotropina/farmacología , Cabras/metabolismo , Tibet , Semen/metabolismo , Hormona Luteinizante , Reproducción/fisiología
6.
Molecules ; 27(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35566239

RESUMEN

Dairy mastitis is a disease of dairy cattle caused by a variety of pathogenic microorganisms which has biought huge economic losses aused huge economic losses to the world. In this paper, Harmine derivatives and tetrahydro-ß-carboline derivatives synthesized by the splice method are shown to have a good inhibitory effect on the pathogenic bacteria of dairy mastitis. The results of a bacteriostatic test on pathogenic bacteria of dairy cow mastitis (S. dysgalactiae, S. pyogenes, B. subtilis and P. vulgaris) showed that compound 7l had the best bacteriostatic effect on Streptococcus dysgalactiae, with a mic value of 43.7 µ g/mL. When the concentration of 7l was 1 × MIC and 2 × MIC, it had a significant inhibitory effect on Streptococcus dysgalactiae, and there was almost no growth of Streptococcus dysgalactiae at 4 × MIC. The binding properties of target compound 7l to amine oxidase [flavin-containing] A protein were simulated by the molecular docking technique. The ligand 7l achieved strong binding with the receptor through three hydrogen bonds. The hydrogen bonds were amino acid residues thr-52, arg-51 and ser-24, which are the main force for the compound to bind to active sites.


Asunto(s)
Harmina , Mastitis Bovina , Animales , Antibacterianos/farmacología , Carbolinas , Bovinos , Femenino , Harmina/farmacología , Humanos , Mastitis Bovina/tratamiento farmacológico , Mastitis Bovina/microbiología , Simulación del Acoplamiento Molecular , Streptococcus
7.
BMC Genomics ; 21(1): 840, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33246410

RESUMEN

BACKGROUND: Copy number variations (CNVs) are a major form of genetic variations and are involved in animal domestication and genetic adaptation to local environments. We investigated CNVs in the domestic goat (Capra hircus) using Illumina short-read sequencing data, by comparing our lab data for 38 goats from three Chinese breeds (Chengdu Brown, Jintang Black, and Tibetan Cashmere) to public data for 26 individuals from three other breeds (two Moroccan and one Chinese) and 21samples from Bezoar ibexes. RESULTS: We obtained a total of 2394 CNV regions (CNVRs) by merging 208,649 high-confidence CNVs, which spanned ~ 267 Mb of total length and accounted for 10.80% of the goat autosomal genome. Functional analyses showed that 2322 genes overlapping with the CNVRs were significantly enriched in 57 functional GO terms and KEGG pathways, most related to the nervous system, metabolic process, and reproduction system. Clustering patterns of all 85 samples generated separately from duplications and deletions were generally consistent with the results from SNPs, agreeing with the geographical origins of these goats. Based on genome-wide FST at each CNV locus, some genes overlapping with the highly divergent CNVs between domestic and wild goats were mainly enriched for several immunity-related pathways, whereas the genes overlapping with the highly differentiated CNVs between highland and lowland goats were mainly related to vitamin and lipid metabolism. Remarkably, a 507-bp deletion at ~ 14 kb downstream of FGF5 on chromosome 6 showed highly divergent (FST = 0.973) between the highland and lowland goats. Together with an enhancer activity of this sequence shown previously, the function of this duplication in regulating fiber growth deserved to be further investigated in detail. CONCLUSION: We generated a comprehensive map of CNVs in goats. Many genetically differentiated CNVs among various goat populations might be associated with the population characteristics of domestic goat breeds.


Asunto(s)
Bezoares , Variaciones en el Número de Copia de ADN , Animales , Genética de Población , Cabras/genética , Secuenciación de Nucleótidos de Alto Rendimiento
8.
Genet Sel Evol ; 51(1): 70, 2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31771503

RESUMEN

BACKGROUND: As one of the important livestock species around the world, goats provide abundant meat, milk, and fiber to fulfill basic human needs. However, the genetic loci that underlie phenotypic variations in domestic goats are largely unknown, particularly for economically important traits. In this study, we sequenced the whole genome of 38 goats from three Chinese breeds (Chengdu Brown, Jintang Black, and Tibetan Cashmere) and downloaded the genome sequence data of 30 goats from five other breeds (four non-Chinese and one Chinese breed) and 21 Bezoar ibexes to investigate the genetic composition and selection signatures of the Chinese goat breeds after domestication. RESULTS: Based on population structure analysis and FST values (average FST = 0.22), the genetic composition of Chengdu Brown goats differs considerably from that of Bezoar ibexes as a result of geographic isolation. Strikingly, the genes under selection that we identified in Tibetan Cashmere goats were significantly enriched in the categories hair growth and bone and nervous system development, possibly because they are involved in adaptation to high-altitude. In particular, we found a large difference in allele frequency of one novel SNP (c.-253G>A) in the 5'-UTR of FGF5 between Cashmere goats and goat breeds with short hair. The mutation at this site introduces a start codon that results in the occurrence of a premature FGF5 protein and is likely a natural causal variant that is involved in the long hair phenotype of cashmere goats. The haplotype tagged with the AGG-allele in exon 12 of DSG3, which encodes a cell adhesion molecule that is expressed mainly in the skin, was almost fixed in Tibetan Cashmere goats, whereas this locus still segregates in the lowland goat breeds. The pigmentation gene KITLG showed a strong signature of selection in Tibetan Cashmere goats. The genes ASIP and LCORL were identified as being under positive selection in Jintang Black goats. CONCLUSIONS: After domestication, geographic isolation of some goat breeds has resulted in distinct genetic structures. Furthermore, our work highlights several positively selected genes that likely contributed to breed-related traits in domestic goats.


Asunto(s)
Genoma , Cabras/genética , Selección Genética , Altitud , Animales , Cruzamiento , China , Evolución Molecular , Variación Genética , Genómica , Cabras/crecimiento & desarrollo , Cabello/crecimiento & desarrollo , Fenotipo , Pigmentación/genética
9.
Funct Integr Genomics ; 18(1): 43-54, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28993898

RESUMEN

Muscle growth and development from fetal to neonatal stages consist of a series of delicately regulated and orchestrated changes in expression of genes. In this study, we performed whole transcriptome profiling based on RNA-Seq of caprine longissimus dorsi muscle tissue obtained from prenatal stages (days 45, 60, and 105 of gestation) and neonatal stage (the 3-day-old newborn) to identify genes that are differentially expressed and investigate their temporal expression profiles. A total of 3276 differentially expressed genes (DEGs) were identified (Q value < 0.01). Time-series expression profile clustering analysis indicated that DEGs were significantly clustered into eight clusters which can be divided into two classes (Q value < 0.05), class I profiles with downregulated patterns and class II profiles with upregulated patterns. Based on cluster analysis, GO enrichment analysis found that 75, 25, and 8 terms to be significantly enriched in biological process (BP), cellular component (CC), and molecular function (MF) categories in class I profiles, while 35, 21, and 8 terms to be significantly enriched in BP, CC, and MF in class II profiles. KEGG pathway analysis revealed that DEGs from class I profiles were significantly enriched in 22 pathways and the most enriched pathway was Rap1 signaling pathway. DEGs from class II profiles were significantly enriched in 17 pathways and the mainly enriched pathway was AMPK signaling pathway. Finally, six selected DEGs from our sequencing results were confirmed by qPCR. Our study provides a comprehensive understanding of the molecular mechanisms during goat skeletal muscle development from fetal to neonatal stages and valuable information for future studies of muscle development in goats.


Asunto(s)
Desarrollo Fetal , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Cabras/genética , Músculo Esquelético/metabolismo , Animales , Animales Recién Nacidos , Femenino , Cabras/crecimiento & desarrollo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Desarrollo de Músculos , Músculo Esquelético/crecimiento & desarrollo , Análisis de Secuencia de ARN/métodos , Transducción de Señal , Transcriptoma
10.
Asian-Australas J Anim Sci ; 31(8): 1088-1097, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29381891

RESUMEN

OBJECTIVE: It is commonly accepted that adiponectin binds to its two receptors to regulate fatty acid metabolism in adipocytes. To better understand their functions in the regulation of intramuscular adipogenesis in goats, we cloned the three genes (adiponectin [AdipoQ], adiponectin receptor 1 [AdipoR1], and AdipoR2) encoding these proteins and detected their mRNA distribution in different tissues. We also determined the role of AdipoQ in the adipogenic differentiation of goat skeletal muscle satellite cells (SMSCs). METHODS: SMSCs were isolated using 1 mg/mL Pronase E from the longissimus dorsi muscles of 3-day-old female Nanjiang brown goats. Adipogenic differentiation was induced in satellite cells by transferring the cells to Dulbecco's modified Eagle's medium supplemented with an isobutylmethylxanthine, dexamethasone and insulin cocktail. The pEGFP-N1-AD plasmid was transfected into SMSCs using Lipofectamine 2000. Expression of adiponectin in tissues and SMSCs was detected by quantitative polymerase chain reaction and immunocytochemical staining. RESULTS: The three genes were predominantly expressed in adipose and skeletal muscle tissues. According to fluorescence and immunocytochemical analyses, adiponectin protein expression was only observed in the cytoplasm, suggesting that adiponectin is localized to the cytoplasm of goat SMSCs. In SMSCs overexpressing the AdipoQ gene, adiponectin promoted SMSC differentiation into adipocytes and significantly (p<0.05) up-regulated expression of AdipoR2, acetyl-CoA carboxylase, fatty-acid synthase, and sterol regulatory element-binding protein-1, though expression of CCAAT/enhancer-binding protein-α, peroxisome proliferator-activated receptor γ, and AdipoR1 did not change significantly. CONCLUSION: Adiponectin induced SMSC differentiation into adipocytes, indicating that adiponectin may promote intramuscular adipogenesis in goat SMSC.

11.
Yi Chuan ; 39(9): 828-836, 2017 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-28936980

RESUMEN

miR-101a promotes the differentiation of goat skeletal muscle satellite cells (SMSCs), as we previously reported, but the underpinning mechanism remains to be illuminated. In this study, we predicted the target gene of miR-101a by employing online softwares PicTar, TargetScan and miRanda, and found that enhancer of zeste homologue 2 (EZH2) was targeted by miR-101a. Further we identified that EZH2 contained miR-101a binding sites at its 3'UTR by using the dual-luciferase reporter assay system. In addition, we showed that during SMSC differentiation, the downregulated levels of EZH2 mRNA and protein were accompanied by increasing miR-101a expression via qRT-PCR and Western blot. Additionally, the expression of EZH2 significantly increased (P<0.01) when miR-101a was suppressed, whereas overexpressing miR-101a almost had no effect on EZH2 expression (P>0.05). These data demonstrated that miR-101a promotes SMSC differentiation directly through EZH2, which provides a theoretical reference for further elucidating the mechanism of miR-101a in SMSC differentiation.


Asunto(s)
Diferenciación Celular/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , MicroARNs/genética , Células Satélite del Músculo Esquelético/fisiología , Regiones no Traducidas 3'/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Línea Celular , Regulación hacia Abajo/genética , Cabras
12.
Artículo en Zh | MEDLINE | ID: mdl-30120915

RESUMEN

Postmortem examinations were made in 99 goats in Nimu County of Tibe, and parasites were collected and identified based on morphology. The collected parasites were categorized, and infection status was analyzed. The helminth infection rate was 100% among the goats, and all showed a pattern of mixed infection. The identified parasites belonged to 21 species, 15 genera, and 9 families. The Trichuris genus(36.4%) was the most prevailing among nematodes in the gastrointestinal tract; Paramphistomum cervi(60.6%) and Paramphistomum gotoi(60.6%) were predominant among trematodes detected; Cysticercus tenuicollis(52.5%) was the predominant cestode detected; and Orientobilharzia turkestanicum was the major parasite detected in the portal vein (69.7%).


Asunto(s)
Enfermedades de las Cabras , Helmintiasis Animal , Animales , Tracto Gastrointestinal , Cabras , Helmintiasis , Nematodos , Tibet
13.
Anim Biotechnol ; 26(3): 217-21, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25927168

RESUMEN

Due to the phenotype-based artificial selection in domestic cattle, the underlying functional genes may be indirectly selected and show decreasing diversity in theory. The growth hormone receptor (GHR) gene has been widely proposed to significantly associate with critical economic traits in cattle. In the present study, we comparatively studied the genetic diversity of GHR in Tibetan cattle (a traditional unselected breed, n = 93) and Chinese Holstein cow (the intensively selected breed, n = 94). The Tibetan yak (n = 38) was also included as an outgroup breed. A total of 21 variants were detected by sequencing 1279 bp genomic fragments encompassing the largest exon 9. Twelve haplotypes (H1∼H12) constructed by 15 coding SNPs were presented as a star-like network profile, in which haplotype H2 was located at the central position and almost occupied by Tibetan yaks. Furthermore, H2 was also identical to the formerly reported sequence specific to African cattle. Only haplotype H5 was simultaneously shared by all three breeds. Tibetan cattle showed higher nucleotide diversity (0.00215 ± 0.00015) and haplotype diversity (0.678 ± 0.026) than Holstein cow. Conclusively, we found Tibetan cattle have retained relatively high genetic variation of GHR. The predominant presence of African cattle specific H2 in the outgroup yak breed would highlight its ancestral relationship, which may be used as one informative molecular marker in the phylogenetic studies.


Asunto(s)
Bovinos/genética , Variación Genética/genética , Receptores de Somatotropina/genética , Animales , Secuencia de Bases , Haplotipos , Datos de Secuencia Molecular
14.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119626, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37977492

RESUMEN

Adipose tissue fibrosis has been identified as a novel contributor to the pathomechanism of obesity associated metabolic disorders. Sulforaphane (SFN) has been shown to have an anti-obesity effect. However, the impact of SFN on adipose tissue fibrosis is still not well understood. In this study, obese mice induced by high-fat diets (HFD) were used to examine the effects of SFN on adipose tissue fibrosis. According to the current findings, SFN dramatically enhanced glucose tolerance and decreased body weight in diet-induced-obesity (DIO) mice. Additionally, SFN therapy significantly reduced extracellular matrix (ECM) deposition and altered the expression of genes related to fibrosis. Furthermore, SFN also reduced inflammation and promoted macrophages polarization towards to M2 phenotype in adipose tissue, which protected adipose tissue from fibrosis. Notably, SFN-mediated nuclear factor E2-related factor 2 (Nrf2) activation was crucial in decreasing adipose tissue fibrosis. These results implied that SFN had favorable benefits in adipose tissue fibrosis, which consequently ameliorates obesity-related metabolic problems. Our research provides new treatment strategies for obesity and associated metabolic disorders.


Asunto(s)
Dieta Alta en Grasa , Isotiocianatos , Enfermedades Metabólicas , Sulfóxidos , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Tejido Adiposo , Obesidad/tratamiento farmacológico , Obesidad/patología , Fibrosis , Macrófagos , Enfermedades Metabólicas/patología
15.
J Reprod Immunol ; 164: 104288, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38924811

RESUMEN

Thymic atrophy affects T cell generation and migration to the periphery, thereby affecting T cell pool diversity. However, the mechanisms underlying thymic atrophy have not been fully elucidated. Here, gonadotropin-releasing hormone (GnRH) immunization and surgical castration did not affect thymocyte proliferation, but significantly reduced the apoptosis and increased the survival rate of CD4-CD8-, CD4+CD8+, CD4+CD8-, and CD4-CD8+ thymocytes. Following testosterone supplementation in rats subjected to GnRH immunization and surgical castration, thymocyte proliferation remained unchange, but the apoptosis of CD4-CD8-, CD4+CD8+, CD4+CD8-, and CD4-CD8+ thymocytes significantly increased. Transcriptome analyses of the thymus after GnRH immunization and surgical castration showed a significant reduction in the thymus's response to corticosterone. Cholesterol metabolism and the synthesis and secretion of corticosterone were significantly reduced. Analysis of the enzyme levels involved in the corticosterone synthesis pathway revealed that corticosterone synthesis in thymocytes was significantly reduced after GnRH immunization and surgical castration, whereas exogenous testosterone supplementation relieved this process. Testosterone promoted thymocyte apoptosis in a concentration-dependent manner, and induced corticosterone secretion in vitro. Blocking the intracellular androgen receptor (AR) signaling pathway did not significantly affect thymocyte apoptosis, but blocking the glucocorticoid receptor (GR) signaling pathway significantly reduced it. Our findings indicate that testosterone regulates thymus remodeling by affecting corticosterone synthesis in thymocytes, which activates GR signal transduction and promotes thymocyte apoptosis.

16.
Front Genet ; 15: 1382128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38873117

RESUMEN

The Sichuan-Yunnan region is the main production area of yaks in southwestern China, with rich genetic resources of Yaks. Nevertheless, there have been limited study on the genetic characteristics of the entire yak populations in Tibet and southwestern China. In this study, we performed whole-genome resequencing to identify genetic variation information in a total of 198 individuals from six yak breeds (populations) in Sichuan (Muli yak, Jinchuan yak, Changtai yak, Maiwa yak), Yunnan (Zhongdian yak), and Tibet (Tibetan yak). The aim was to investigate the whole-genome genetic diversity, population genetic structure, and genome selection signatures. We observed that all six populations exhibit abundant genetic diversity. Except for Tibetan yaks, which showed low nucleotide diversity (0.00104), the remaining yak populations generally displayed high nucleotide diversity (0.00129-0.00153). Population genetic structure analysis revealed that, among the six yak populations, Muli yak exhibited greater differentiation from other yak populations and formed a distinct cluster independently. The Maiwa yak population displayed a complex genetic structure and exhibited gene exchange with Jinchuan and Changtai yaks. Positive selection signals were detected in candidate genes associated with growth (GNB4, HMGA2, TRPS1, and LTBP1), reproduction (PI4KB, DYNC1I1, and GRIP1), immunity (CD200 and IL1RAP), lactation (SNX13 and CPM), hypoxia adaptation (NDUFB6, PRKN, and MRPS9), hair (KRT24, KRT25, and KRT26), meat quality (SUCLG2), digestion and absorption (CLDN1), and pigment deposition (OCA2) using the integrated Pi and F ST methods. This study provides significant insights into understanding the whole-genome genetic characteristics of yak populations in Tibet and southwestern China.

17.
J Anim Sci Biotechnol ; 15(1): 86, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38858724

RESUMEN

BACKGROUND: Previous studies have shown that the vitrification of metaphase II (MII) oocytes significantly represses their developmental potential. Abnormally increased oxidative stress is the probable factor; however, the underlying mechanism remains unclear. The walnut-derived peptide TW-7 was initially isolated and purified from walnut protein hydrolysate. Accumulating evidences implied that TW-7 was a powerful antioxidant, while its prospective application in oocyte cryopreservation has not been reported. RESULT: Here, we found that parthenogenetic activation (PA) zygotes derived from vitrified MII oocytes showed elevated ROS level and delayed progression of pronucleus formation. Addition of 25 µmol/L TW-7 in warming, recovery, PA, and embryo culture medium could alleviate oxidative stress in PA zygotes from vitrified mouse MII oocytes, furtherly increase proteins related to histone lactylation such as LDHA, LDHB, and EP300 and finally improve histone lactylation in PA zygotes. The elevated histone lactylation facilitated the expression of minor zygotic genome activation (ZGA) genes and preimplantation embryo development. CONCLUSIONS: Our findings revealed the mechanism of oxidative stress inducing repressed development of PA embryos from vitrified mouse MII oocytes and found a potent and easy-obtained short peptide that could significantly rescue the decreased developmental potential of vitrified oocytes, which would potentially contribute to reproductive medicine, animal protection, and breeding.

19.
Vet Sci ; 10(8)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37624310

RESUMEN

(1) Background: Bangor Sewa sheep are an economically significant livestock species on the plateau. The roles of microbiota in reproduction are complex and critical for animal health. But little is known currently about the microbiome of plateau Bangor Sewa sheep. The purpose of this study was to discover the changes in the genital tract microbiota of pre- and post-partum Bangor Sewa sheep. (2) Methods: Samples from the birth canal were obtained for 16S rRNA sequencing, three days before and after delivery, respectively. (3) Results: The results showed that there was a noticeable difference in three phyla and 74 genera between the pre- and post-parturition groups in the microbiota of Bangor Sewa sheep. The changes included a decrease in the abundance of genera related to health (unclassified_Cellulomonadaceae, Cellulomonas, Fibrobacti, Flavobacterium, Eubacterium_ventriosum_group, Acetitomaculum, Aeromicrobium, Dietzia, Romboutsia, Ruminococcus, etc.) and an increased abundance of negatively related genera (Nocardioides, unclassified_Clostridia, Sphingobacteriaceae, unclassified_Ruminococcaceae, Prevotellaceae_UCG_004, Micromonospora, Streptococcus, Facklamia, Bosea, etc.) spp. (4) Conclusions: Microbes can serve as indicators of the physical state of Bangor Sewa sheep. These findings laid the foundation for deciphering the effects of microbial changes during birth on the reproductive health of plateau Bangor Sewa sheep.

20.
J Reprod Immunol ; 159: 104132, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37591181

RESUMEN

Active immunization against gonadotropin-releasing hormone (GnRH) inhibits animal reproduction and has become a friendly alternative to surgical castration, which has been reported to affect the proportion of thymic T cell subpopulations. The effects of active immunization against GnRH on T cell migration from the thymus to the periphery and T cell distribution in lymphoid tissues remain unclear. Here, we showed that active immunization against GnRH increased thymic size and weight, enlarged the number of thymocytes, and enhanced CD4+ recent thymic emigrants (RTEs) and CD8+ RTEs migration to the blood and spleen. Active immunization against GnRH had no significant effect on naïve CD4+, naïve CD8+, CD4+ memory/activated, or CD8+ memory/activated T cells. In addition, active immunization against GnRH increased the proportion of CD3+ T cells in the spleen and lymph nodes. The percentages of CD3+CD4+ and CD3+CD8+ T cells in the blood, spleen, and lymph nodes were not significantly affected by GnRH immunization. Overall, these results enhance our understanding of thymic T cell production, migration, and colonization in rat lymphoid tissues affected by GnRH immunization.


Asunto(s)
Linfocitos T CD8-positivos , Timo , Masculino , Animales , Ratas , Tejido Linfoide , Vacunación , Hormona Liberadora de Gonadotropina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA