Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Appl Environ Microbiol ; 88(7): e0217321, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35289641

RESUMEN

Oyster mushrooms have a high biological efficiency and are easy to cultivate, which is why they are produced all over the world. Cap color is an important commercial trait for oyster mushrooms. Little is known about the genetic mechanism of the cap color trait in oyster mushrooms, which limits molecular breeding for the improvement of cap color-type cultivars. In this study, a 0.8-Mb major quantitative trait locus (QTL) region controlling cap color in the oyster mushroom Pleurotus cornucopiae was mapped on chromosome 7 through bulked-segregant analysis sequencing (BSA-seq) and extreme-phenotype genome-wide association studies (XP-GWAS). Candidate genes were further selected by comparative transcriptome analysis, and a tyrosinase gene (PcTYR) was identified as the highest-confidence candidate gene. Overexpression of PcTYR resulted in a significantly darker cap color, while the cap color of RNA interference (RNAi) strains for this gene was significantly lighter than that of the wild-type (WT) strains, suggesting that PcTYR plays an essential role in cap color formation. This is the first report about fine mapping and functional verification of a gene controlling cap color in oyster mushrooms. This will enhance our understanding of the genetic basis for cap color formation in oyster mushrooms and will facilitate molecular breeding for cap color. IMPORTANCE Oyster mushrooms are widely cultivated and consumed over the world for their easy cultivation and high biological efficiency (mushroom fresh weight/substrate dry weight × 100%). Fruiting bodies with dark caps are more and more popular according to consumer preferences, but dark varieties are rarely seen on the market. Little is known about the genetic mechanism of the cap color trait in oyster mushrooms, which limits molecular breeding for the improvement of cap color-type cultivars. A major QTL of cap color in oyster mushroom P. cornucopiae was fine mapped by using bulked-segregant analysis (BSA) and extreme-phenotype genome-wide association study (XP-GWAS) analysis. A candidate gene PcTYR coding tyrosinase was further identified with the help of comparative transcriptome analysis. qPCR analysis and genetic transformation tests proved that PcTYR played an essential role in cap color formation. This study will contribute to revealing the genetic mechanism of cap color formation in mushrooms, thereby facilitating molecular breeding for cap color trait.


Asunto(s)
Pleurotus , Estudio de Asociación del Genoma Completo , Monofenol Monooxigenasa/genética , Pleurotus/genética , Sitios de Carácter Cuantitativo
2.
Appl Environ Microbiol ; 87(21): e0095321, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34406836

RESUMEN

Oyster mushrooms are grown commercially worldwide, especially in many developing countries, for their easy cultivation and high biological efficiency. Pleurotus cornucopiae is one of the main oyster mushroom species because of its gastronomic value and nutraceutical properties. Cap color is an important trait, since consumers prefer dark mushrooms, which are now represented by only a small portion of the commercial varieties. Breeding efforts are required to improve quality-related traits to satisfy various demands of consumers. Here, we present a saturated genetic linkage map of P. cornucopiae constructed by using a segregating population of 122 monokaryons and 3,449 single nucleotide polymorphism (SNP) markers generated by the 2b-RAD approach. The map contains 11 linkage groups covering 961.6 centimorgans (cM), with an average marker spacing of 0.27 cM. The genome of P. cornucopiae was de novo sequenced, resulting in 425 scaffolds (>1,000 bp) with a total genome size of 35.1 Mb. The scaffolds were assembled to the pseudochromosome level with the assistance of the genetic linkage map. A total of 97% SNP markers (3,357) were physically localized on 140 scaffolds that were assigned to 11 pseudochromosomes, with a total of 32.5 Mb, representing 92.5% of the whole genome. Six quantitative trait loci (QTL) controlling cap color of P. cornucopiae were detected, accounting for a total phenotypic variation of 65.6%, with the highest value for the QTL on pseudochromosome 5 (18%). The results of our study provide a solid base for marker-assisted breeding for agronomic traits and especially for studies on biological mechanisms controlling cap color in oyster mushrooms. IMPORTANCE Oyster mushrooms are produced and consumed all over the world. Pleurotus cornucopiae is one of the main oyster mushroom species. Dark-cap oyster mushrooms are becoming more and more popular with consumers, but dark varieties are rare on the market. Prerequisites for efficient breeding programs are the availability of high-quality whole genomes and genetic linkage maps. Genetic studies to fulfill some of these prerequisites have hardly been done for P. cornucopiae. In this study, we de novo sequenced the genome and constructed a saturated genetic linkage map for P. cornucopiae. The genetic linkage map was effectively used to assist the genome assembly and identify QTL that genetically control the trait cap color. As well, the genome characteristics of P. cornucopiae were compared to the closely related species Pleurotus ostreatus. The results provided a basis for understanding the genetic background and marker-assisted breeding of this economically important mushroom species.


Asunto(s)
Ligamiento Genético , Pleurotus , Sitios de Carácter Cuantitativo , Marcadores Genéticos , Mapeo Físico de Cromosoma , Pigmentación/genética , Pleurotus/genética , Polimorfismo de Nucleótido Simple
3.
Proc Natl Acad Sci U S A ; 115(17): 4429-4434, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29643074

RESUMEN

Many fungi are polykaryotic, containing multiple nuclei per cell. In the case of heterokaryons, there are different nuclear types within a single cell. It is unknown what the different nuclear types contribute in terms of mRNA expression levels in fungal heterokaryons. Each cell of the mushroom Agaricus bisporus contains two to 25 nuclei of two nuclear types originating from two parental strains. Using RNA-sequencing data, we assess the differential mRNA contribution of individual nuclear types and its functional impact. We studied differential expression between genes of the two nuclear types, P1 and P2, throughout mushroom development in various tissue types. P1 and P2 produced specific mRNA profiles that changed through mushroom development. Differential regulation occurred at the gene level, rather than at the locus, chromosomal, or nuclear level. P1 dominated mRNA production throughout development, and P2 showed more differentially up-regulated genes in important functional groups. In the vegetative mycelium, P2 up-regulated almost threefold more metabolism genes and carbohydrate active enzymes (cazymes) than P1, suggesting phenotypic differences in growth. We identified widespread transcriptomic variation between the nuclear types of A. bisporus Our method enables studying nucleus-specific expression, which likely influences the phenotype of a fungus in a polykaryotic stage. Our findings have a wider impact to better understand gene regulation in fungi in a heterokaryotic state. This work provides insight into the transcriptomic variation introduced by genomic nuclear separation.


Asunto(s)
Agaricus/metabolismo , Núcleo Celular/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , ARN de Hongos/biosíntesis , ARN Mensajero/biosíntesis , Regulación hacia Arriba/fisiología , Agaricus/genética , Núcleo Celular/genética , ARN de Hongos/genética , ARN Mensajero/genética , Transcriptoma/fisiología
4.
Molecules ; 25(13)2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32610638

RESUMEN

The button mushroom Agaricus bisporus is an economically important crop worldwide. Many aspects of its cultivation are well known, except for the precise biological triggers for its fructification. By and large, for most basidiomycete species, nutrient availability, light and a drop in temperature are critical factors for fructification. A. bisporus deviates from this pattern in the sense that it does not require light for fructification. Furthermore its fructification seems to be inhibited by a self-generated factor which needs to be removed by microorganisms in order to initiate fruiting. This review explores what is known about the morphogenesis of fruiting initiation in A. bisporus, the microflora, the self-inhibitors for fruiting initiation and transcription factors involved. This information is subsequently contrasted with an overall model of the regulatory system involved in the initiation of the formation of primordia in basidiomycetes. The comparison reveals a number of the blank spots in our understanding of the fruiting process in A. bisporus.


Asunto(s)
Agaricus/crecimiento & desarrollo , Agaricus/genética , Agaricus/metabolismo , Agaricus/química , Producción de Cultivos/métodos , Humanos , Temperatura , Factores de Transcripción/genética
5.
J Sci Food Agric ; 99(8): 4054-4062, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30737799

RESUMEN

BACKGROUND: White rot fungi have been used to improve the nutritive value of lignocellulose for ruminants. In feed analysis, the Van Soest method is widely used to determine the cell wall contents. To assess the reliability of this method (Method A) for determination of cell wall contents in fungal-treated wheat straw, we compared a combined monosaccharide analysis and pyrolysis coupled to gas chromatography with mass spectrometry (Py-GC/MS) (Method B). Ruminal digestibility, measured as in vitro gas production (IVGP), was subsequently used to examine which method explains best the effect of fungal pretreatment on the digestibility of wheat straw. RESULTS: Both methods differed considerably in the mass recoveries of the individual cell wall components, which changed on how we assess their degradation characteristics. For example, Method B gave a higher degradation of lignin (61.9%), as compared to Method A (33.2%). Method A, however, showed a better correlation of IVGP with the ratio of lignin to total structural carbohydrates, as compared to Method B (Pearson's r of -0.84 versus -0.69). Nevertheless, Method B provides a more accurate quantification of lignin, reflecting its actual modification and degradation. With the information on the lignin structural features, Method B presents a substantial advantage in understanding the underlying mechanisms of lignin breakdown. Both methods, however, could not accurately quantify the cellulose contents - among others, due to interference of fungal biomass. CONCLUSION: Method A only accounts for the recalcitrant residue and therefore is more suitable for evaluating ruminal digestibility. Method B allows a more accurate quantification of cell wall, required to understand and better explains the actual modification of the cell wall. The suitability of both methods, therefore, depends on their intended purposes. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Alimentación Animal/análisis , Basidiomycota/metabolismo , Pared Celular/química , Triticum/microbiología , Alimentación Animal/microbiología , Animales , Pared Celular/metabolismo , Pared Celular/microbiología , Celulosa/análisis , Celulosa/metabolismo , Digestión , Cromatografía de Gases y Espectrometría de Masas , Lignina/análisis , Lignina/metabolismo , Valor Nutritivo , Tallos de la Planta/química , Tallos de la Planta/metabolismo , Tallos de la Planta/microbiología , Rumiantes , Triticum/química , Triticum/metabolismo
6.
J Sci Food Agric ; 99(2): 957-965, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30125969

RESUMEN

BACKGROUND: This study investigated the ruminal degradability of various wheat straw types by the white-rot fungi Ceriporiopsis subvermispora (CS) and Lentinula edodes (LE). Different cultivars (CV) of wheat straw at different maturity stages (MS) were treated with the fungi for 7 weeks and assessed for chemical composition and in vitro gas production (IVGP). RESULTS: Both fungi showed a more pronounced degradation of lignin on a more mature straw (MS3; 89.0%) in comparison with the straw harvested at an earlier stage (MS1; 70.7%). Quantitative pyrolysis coupled to gas chromatography and mass spectrometry, using 13 C lignin as an internal standard 13 C-IS Py-GC/MS revealed that lignin in more mature straw was degraded and modified to a greater extent. In contrast, cellulose was less degraded in MS3, as compared to MS1 (8.3% versus 14.6%). There was no effect of different MS on the IVGP of the fungus-treated straws. Among the different straw cultivars, the extent of lignin degradation varied greatly (47% to 93.5%). This may explain the significant (P < 0.001) effect of cultivar on the IVGP of the fungal-treated straws. Regardless of the factors tested, both fungi were very capable of improving the IVGP of all straw types by 15.3% to 47.6%, (as compared to untreated straw), with CS performing better than LE - on different MS (33.6% versus 20.4%) and CVs (43.2% versus 29.1%). CONCLUSION: The extent of lignin degradation caused by fungal treatment was more pronounced on the more mature and lignified straw, while variable results were obtained with different cultivars. Both fungi were capable of improving the IVGP of various straw types. © 2018 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Alimentación Animal/análisis , Basidiomycota/metabolismo , Tallos de la Planta/metabolismo , Rumen/metabolismo , Hongos Shiitake/metabolismo , Triticum/microbiología , Alimentación Animal/microbiología , Animales , Bovinos , Celulosa/química , Celulosa/metabolismo , Digestión , Lignina/química , Lignina/metabolismo , Tallos de la Planta/química , Tallos de la Planta/microbiología , Triticum/química , Triticum/metabolismo
7.
BMC Genomics ; 19(1): 18, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29304732

RESUMEN

BACKGROUND: Pleurotus tuoliensis (Bailinggu) is a commercially cultivated mushroom species with an increasing popularity in China and other Asian countries. Commercial profits are now low, mainly due to a low yield, long cultivation period and sensitivity to diseases. Breeding efforts are thus required to improve agronomical important traits. Developing saturated genetic linkage and physical maps is a start for applying genetic and molecular approaches to accelerate the precise breeding programs. RESULTS: Here we present a genetic linkage map for P. tuoliensis constructed by using 115 haploid monokaryons derived from a hybrid strain H6. One thousand one hundred and eighty-two SNP markers developed by 2b-RAD (type IIB restriction-site associated DNA) approach were mapped to 12 linkage groups. The map covers 1073 cM with an average marker spacing of 1.0 cM. The genome of P. tuoliensis was de novo sequenced as 40.8 Mb and consisted of 500 scaffolds (>500 bp), which showed a high level of colinearity to the genome of P. eryngii var. eryngii. A total of 97.4% SNP markers (1151) were physically localized on 78 scaffolds, and the physical length of these anchored scaffolds were 33.9 Mb representing 83.1% of the whole genome. Mating type loci A and B were mapped on separate linkage groups and identified physically on the assembled genomes. Five putative pheromone receptors and two putative pheromone precursors were identified for the mating type B locus. CONCLUSIONS: This study reported a first genetic linkage map integrated with physical mapping of the de novo sequenced genome and the mating type loci of an important cultivated mushroom in China, P. tuoliensis. The de novo sequenced and annotated genome, assembled using a 2b-RAD generated linkage map, provides a basis for marker-assisted breeding of this economic important mushroom species.


Asunto(s)
Mapeo Cromosómico , Genes del Tipo Sexual de los Hongos , Sitios Genéticos , Genoma Fúngico , Pleurotus/genética , Ligamiento Genético , Genómica , Técnicas de Genotipaje , Mapeo Físico de Cromosoma
8.
J Sci Food Agric ; 98(13): 5112-5119, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29635845

RESUMEN

BACKGROUND: One of the main problems in the button mushroom industry is the rapid deterioration of fruit bodies after harvest. Today, nanotechnology has become a more reliable technique to improve the quality of products in food packaging. In the present study, the effectiveness of chitosan nanoparticles containing Citrus aurantium essential oil on postharvest quality of white button mushroom was examined and compared to essential oil fumigation and control treatments. RESULTS: Based on high-resolution transmission electron microscopy and dynamic light scattering, nanoparticles exhibited a spherical shape of 20-60 nm diameter. The results revealed that the application of chitosan nanoparticles loaded with C. aurantium oil significantly decelerated the rate of color change, weight loss and firmness compared to fumigation with essential oil and control treatments. Treatment of fruit bodies with chitosan nanoparticles loaded with C. aurantium oil promoted the accumulation of phenolic compounds and ascorbic acid, and resulted in increases in catalase and superoxide dismutase and a decrease in polyphenol oxidase activities, as the highest antioxidant capacity was observed after 15 days of cold storage. CONCLUSION: This present research demonstrates that gradual release of C. aurantium essential oil from chitosan nanoparticles could be an effective and practical method for extending the shelf life of white button mushroom up to 15 days without significant decrease in antioxidant capacity. © 2018 Society of Chemical Industry.


Asunto(s)
Agaricus/química , Quitosano/química , Citrus/química , Conservación de Alimentos/métodos , Conservantes de Alimentos/farmacología , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Agaricus/efectos de los fármacos , Catalasa/análisis , Conservantes de Alimentos/química , Almacenamiento de Alimentos , Cuerpos Fructíferos de los Hongos/clasificación , Cuerpos Fructíferos de los Hongos/efectos de los fármacos , Fumigación , Nanopartículas/química , Aceites Volátiles/química , Fenoles/análisis , Aceites de Plantas/química , Control de Calidad , Superóxido Dismutasa/análisis
9.
J Sci Food Agric ; 98(3): 1232-1239, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29030967

RESUMEN

BACKGROUND: No attention has been paid so far to the preservation of fungal-treated lignocellulose for longer periods. In the present study, we treated wheat straw (WS) with the white-rot fungi Ceriporiopsis subvermispora and Lentinula edodes for 8 weeks and assessed changes in pH, chemical composition and in vitro gas production (IVGP) weekly. Fungal-treated WS was also stored for 64 days 'as is', with the addition of lactic acid bacteria (LAB) or with a combination of LAB and molasses in airtight glass jars mimicking ensiling conditions. RESULTS: Both fungi significantly reduced the lignin and hemicellulose content of WS, and increased the cellulose content. The IVGP increased with increasing time of incubation, indicating the increase in digestibility. Both fungi lowered the pH of WS under 4.3, which guarantees an initial and stable low pH during anaerobic storage. Minor changes in fibre composition and IVGP were observed for stored L. edodes treated WS, whereas no change occurred for C. subvermispora. CONCLUSION: It is possible to conserve C. subvermispora and L. edodes treated straw under anaerobic condition without additives up to 64 days. This finding is important for practical application to supply fungi-treated feed to ruminant animals for a prolonged period. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Coriolaceae/metabolismo , Hongos Shiitake/metabolismo , Triticum/química , Triticum/microbiología , Anaerobiosis , Alimentación Animal/análisis , Animales , Celulosa/análisis , Celulosa/metabolismo , Fermentación , Lignina/análisis , Lignina/metabolismo , Tallos de la Planta/química , Tallos de la Planta/metabolismo , Tallos de la Planta/microbiología , Polisacáridos/análisis , Polisacáridos/metabolismo , Rumiantes/metabolismo , Triticum/metabolismo
10.
Appl Microbiol Biotechnol ; 101(5): 1819-1829, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28130632

RESUMEN

True breeding of button mushrooms has hardly been done in the last decades, despite this species being one of the most cultivated mushrooms worldwide. Research done in the last 20 years has identified and characterised new germplasm and improved our understanding of the genetic base for some traits. A substantial collection of wild-collected strains is now available and partly characterised for a number of important traits such as disease resistance and yield. Most of the variations found in a number of important agronomic traits have a considerable heritability and are thus useful for breeding. Genetic marker technology has also developed considerably for this mushrooms in the last decade and used to identify quantitative trait loci (QTL) for important agronomic traits. This progress has, except for one example, not resulted so far into new commercially varieties. One of the reasons lies in the typical life cycle of the button mushroom Agaricus bisporus var. bisporus which hampers breeding. Joint investment is needed to solve technical problems in breeding. Special attention is needed for the protection of new varieties. Due to its typical life cycle, it is very easy to generate so called "look-a-likes" from protected cultivars by screening fertile single spore cultures. A consensus has been reached within the mushroom (breeding) industry to consider this method as the generation of essentially derived varieties as defined in plant breeding.


Asunto(s)
Agaricus/crecimiento & desarrollo , Agaricus/genética , Cruzamientos Genéticos , Marcadores Genéticos/genética , Sitios de Carácter Cuantitativo
11.
Proc Natl Acad Sci U S A ; 111(40): 14500-5, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25246537

RESUMEN

Termites normally rely on gut symbionts to decompose organic matter but the Macrotermitinae domesticated Termitomyces fungi to produce their own food. This transition was accompanied by a shift in the composition of the gut microbiota, but the complementary roles of these bacteria in the symbiosis have remained enigmatic. We obtained high-quality annotated draft genomes of the termite Macrotermes natalensis, its Termitomyces symbiont, and gut metagenomes from workers, soldiers, and a queen. We show that members from 111 of the 128 known glycoside hydrolase families are represented in the symbiosis, that Termitomyces has the genomic capacity to handle complex carbohydrates, and that worker gut microbes primarily contribute enzymes for final digestion of oligosaccharides. This apparent division of labor is consistent with the Macrotermes gut microbes being most important during the second passage of comb material through the termite gut, after a first gut passage where the crude plant substrate is inoculated with Termitomyces asexual spores so that initial fungal growth and polysaccharide decomposition can proceed with high efficiency. Complex conversion of biomass in termite mounds thus appears to be mainly accomplished by complementary cooperation between a domesticated fungal monoculture and a specialized bacterial community. In sharp contrast, the gut microbiota of the queen had highly reduced plant decomposition potential, suggesting that mature reproductives digest fungal material provided by workers rather than plant substrate.


Asunto(s)
Isópteros/metabolismo , Plantas/metabolismo , Simbiosis , Termitomyces/metabolismo , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Metabolismo de los Hidratos de Carbono , Sistema Digestivo/metabolismo , Sistema Digestivo/microbiología , Femenino , Proteínas Fúngicas/metabolismo , Glicósido Hidrolasas/metabolismo , Interacciones Huésped-Patógeno , Isópteros/genética , Isópteros/microbiología , Masculino , Metagenoma/genética , Consorcios Microbianos/genética , Consorcios Microbianos/fisiología , Oligosacáridos/metabolismo , Polisacáridos/metabolismo , Análisis de Secuencia de ADN , Termitomyces/genética , Termitomyces/fisiología
12.
Fungal Genet Biol ; 93: 35-45, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27288752

RESUMEN

The button mushroom (Agaricus bisporus) is one of the world's most cultivated mushroom species, but in spite of its economic importance generation of new cultivars by outbreeding is exceptional. Previous genetic analyses of the white bisporus variety, including all cultivars and most wild isolates revealed that crossing over frequencies are low, which might explain the lack of introducing novel traits into existing cultivars. By generating two high quality whole genome sequence assemblies (one de novo and the other by improving the existing reference genome) of the first commercial white hybrid Horst U1, a detailed study of the crossover (CO) landscape was initiated. Using a set of 626 SNPs in a haploid offspring of 139 single spore isolates and whole genome sequencing on a limited number of homo- and heterokaryotic single spore isolates, we precisely mapped all COs showing that they are almost exclusively restricted to regions of about 100kb at the chromosome ends. Most basidia of A. bisporus var. bisporus produce two spores and pair preferentially via non-sister nuclei. Combined with the COs restricted to the chromosome ends, these spores retain most of the heterozygosity of the parent thus explaining how present-day white cultivars are genetically so close to the first hybrid marketed in 1980. To our knowledge this is the first example of an organism which displays such specific CO landscape.


Asunto(s)
Agaricus/genética , Intercambio Genético , Recombinación Genética , Esporas Fúngicas/genética , ADN de Hongos/genética , Genoma Fúngico , Haploidia , Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo , Polimorfismo de Nucleótido Simple , Esporas Fúngicas/crecimiento & desarrollo
13.
Fungal Genet Biol ; 77: 69-81, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25881912

RESUMEN

White button mushrooms discolor after mechanical damage of the cap skin. This hampers the development of a mechanical harvest system for the fresh market. To unravel the genetic basis for bruising sensitivity, two haploid populations (single spore cultures) were generated derived from crosses between parental lines differing in discoloration after mechanical damage (bruising sensitivity). The haploids were crossed with different homokaryotic tester lines to generate mushrooms and allow assessment of the bruising sensitivity in different genetic backgrounds. Bruising sensitivity appears to be a polygenic highly heritable trait (H(2): 0.88-0.96) and a significant interaction between genotypes and tester lines and genotypes and flushes was found. Using SNP markers evenly spread over all chromosomes, a very low recombination was found between markers allowing only assignment of QTL for bruising sensitivity to chromosomes and not to sub-regions of chromosomes. The cap color of the two parental lines of population 1 is white and brown respectively. A major QTL for bruising sensitivity was assigned to chromosome 8 in population 1 that also harbors the main determinant for cap color (brown versus white). Splitting offspring in white and non-white mushrooms made minor QTL for bruising sensitivity on other chromosomes (e.g. 3 and 10) more prominent. The one on chromosome 10 explained 31% phenotypic variation of bruising sensitivity in flush 2 in the subpopulations of population 1. The two parental lines of population 2 are both white. Major QTL of bruising sensitivity were detected on chromosome 1 and 2, contributing totally more than 44% variation of the bruising sensitivity in flush 1 and 54% variation of that in flush 2. A considerable consistency was found in QTL for bruising sensitivity in the different populations studied across tester lines and flushes indicating that this study will provide a base for breeding cultivars that are less sensitive for bruising allowing the use of mechanical harvest and automatic postharvest handling for produce for the fresh market. The low recombination between homologous chromosomes, however, underlines the need to introduce a normal recombination pattern found in a subspecies of the button mushroom.


Asunto(s)
Agaricus/genética , Sitios de Carácter Cuantitativo/fisiología , Agaricus/fisiología , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Color , Cruzamientos Genéticos
14.
Proc Natl Acad Sci U S A ; 109(43): 17501-6, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23045686

RESUMEN

Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the "button mushroom" forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and ß-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics.


Asunto(s)
Adaptación Fisiológica/genética , Agaricus/genética , Ecología , Genoma Fúngico , Agaricus/metabolismo , Agaricus/fisiología , Evolución Molecular , Lignina/metabolismo
15.
J Sci Food Agric ; 95(2): 344-50, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24799300

RESUMEN

BACKGROUND: Food is a potential source of immunomodulating compounds that may be used to steer immune responses towards a desired status such as reducing inflammatory disorders. However, to identify and characterize such bioactive compounds, biologically relevant and standardized assays are required. Macrophages play an important role in immunomodulation and are suited for developing cell-based assays. An assay was developed based on macrophages, in a homogeneous differentiation state, using the human monocytic cell line THP-1 previously used to assess immunomodulatory properties of low-molecular-weight allergens, hormones, dietary supplements and therapeutic drugs. RESULTS: Zymosan and mushroom polysaccharide extracts lead to a heterogeneous differentiation state of THP-1 monocytes, and these cells secrete low levels of cytokines upon stimulation. Differentiation into macrophages using a low concentration of phorbol 12-myristate 13-acetate improved responsiveness. Elevated levels of cytokines were secreted by cells in a homogenous differentiation state. In addition, it was determined that the assay performs best when using cells at a concentration of (2.5-5) × 10(5) cells mL(-1). CONCLUSION: An assay was developed suitable to distinguish the immunomodulatory properties of food compounds in a reproducible manner. It was evaluated using eight mushroom species by measuring the secretion of relevant cytokines TNF-α, IL-1ß, IL-6 and IL-10.


Asunto(s)
Agaricus/química , Coprinus/química , Citocinas/metabolismo , Factores Inmunológicos/farmacología , Macrófagos/efectos de los fármacos , Monocitos/efectos de los fármacos , Polisacáridos/farmacología , Agaricales/química , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Diferenciación Celular/efectos de los fármacos , Línea Celular , Humanos , Factores Inmunológicos/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Monocitos/metabolismo , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Zimosan/farmacología
16.
BMC Evol Biol ; 14: 121, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24902958

RESUMEN

BACKGROUND: We investigate the scope for selection at the level of nuclei within fungal individuals (mycelia) of the mutualistic Termitomyces cultivated by fungus-growing termites. Whereas in most basidiomycete fungi the number and kind of nuclei is strictly regulated to be two per cell, in Termitomyces mycelia the number of nuclei per cell is highly variable. We hypothesised that natural selection on these fungi not only occurs between mycelia, but also at the level of nuclei within the mycelium. We test this hypothesis using in vitro tests with five nuclear haplotypes of a Termitomyces species. RESULTS: First, we studied the transition from a mixture of five homokaryons (mycelia with identical nuclei) each with a different nuclear haplotype to heterokaryons (mycelia with genetically different nuclei). In vitro cultivation of this mixture for multiple asexual transfers led to the formation of multiple heterokaryotic mycelia, and a reduction of mycelial diversity over time. All heterokaryotic mycelia contained exactly two types of nucleus. The success of a heterokaryon during in vitro cultivation was mainly determined by spore production and to a lesser extent by mycelial growth rate. Second, heterokaryons invariably produced more spores than homokaryons implying that homokaryons will be outcompeted. Third, no homokaryotic 'escapes' from a heterokaryon via the formation of homokaryotic spores were found, despite extensive spore genotyping. Fourth, in contrast to most studied basidiomycete fungi, in Termitomyces sp. no nuclear migration occurs during mating, limiting the scope for nuclear competition within the mycelium. CONCLUSIONS: Our experiments demonstrate that in this species of Termitomyces the scope for selection at the level of the nucleus within an established mycelium is limited. Although 'mate choice' of a particular nuclear haplotype is possible during mating, we infer that selection primarily occurs between mycelia with two types of nucleus (heterokaryons).


Asunto(s)
Termitomyces/citología , Animales , Núcleo Celular/genética , Haplotipos , Isópteros/microbiología , Micelio/fisiología , Simbiosis , Termitomyces/crecimiento & desarrollo , Termitomyces/fisiología
17.
Fungal Genet Biol ; 55: 6-21, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23608317

RESUMEN

Repetitive DNA elements are ubiquitous constituents of eukaryotic genomes. The biological roles of these repetitive elements, supposed to impact genome organization and evolution, are not completely elucidated yet. The availability of whole genome sequence offers the opportunity to draw a picture of the genome-wide distribution of these elements and provide insights into potential mechanisms of genome plasticity. The present study uses in silico approaches to describe tandem repeats and transposable elements distribution in the genome of the button mushroom, Agaricus bisporus. Transposable elements comprised 12.43% of the assembled genome, and 66% of them were found clustered in the centromeric or telomeric regions. Methylation of retrotransposon has been demonstrated. A total of 1996 mini-, 4062 micro-, and 37 satellites motifs were identified. The microsatellites appeared widely and evenly spread over the whole genome sequence, whereas the minisatellites were not randomly distributed. Indeed, minisatellites were found to be associated with transposable elements clusters. Telomeres exhibited a specific sequence with a T(n)AG(n) signature. A comparison between the two available genome sequences of A. bisporus was also performed and sheds light on the genetic divergence between the two varieties. Beyond their role in genome structure, repeats provide a virtually endless source of molecular markers useful for genetic studies in this cultivated species.


Asunto(s)
Agaricus/genética , ADN de Hongos/genética , Genoma Fúngico , Secuencias Repetitivas de Ácidos Nucleicos , Biología Computacional/métodos , Elementos Transponibles de ADN , Repeticiones de Microsatélite , Telómero
18.
PLoS One ; 17(7): e0270633, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35881577

RESUMEN

A number of experiments were done to further our understanding of the substrate utilization in button mushroom crops (Agaricus bisporus). An analysis of the degradation of dry matter of the substrate during a crop cycle revealed that for pin formation the upper 1/3rd layer is used, for the production of flush one all layers are involved and for flush two mainly the lower 1/3 layer is used. A reduction in substrate depth leads to a decrease in yield/m2 but an apparent increase in yield per tonne of substrate with a lower mushroom quality. A short daily interruption of the connection between the casing soil with the substrate results in a delay of the first flush. Interruptions with only part of the substrate did not lead to delay in production. Daily interruption of the connection with all or only part of the substrate leads to a shift in yield from flush one to flush two but the total yield remains unchanged. The mycelial biomass in the substrate increases from filling up to pinning, has a steeper increase during flush one, and is levelling off during flush two, indicating that in the period of venting and up to/including flush one, enzymes are secreted by growing hyphae generating nutrients to feed a fixed amount of mushroom biomass for two flushes. A sidewise extension of the substrate (without casing soil, thus not producing mushrooms) showed that the substrate at a distance more than somewhere between 20-50 cm away from the casing soil does not contribute to feeding mushrooms in the first two flushes. The observations are discussed with respect to relevant previous research.


Asunto(s)
Agaricus , Agaricus/metabolismo , Biomasa , Micelio , Suelo
19.
Genes (Basel) ; 12(7)2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34356095

RESUMEN

In heterothallic basidiomycete fungi, sexual compatibility is restricted by mating types, typically controlled by two loci: PR, encoding pheromone precursors and pheromone receptors, and HD, encoding two types of homeodomain transcription factors. We analysed the single mating-type locus of the commercial button mushroom variety, Agaricus bisporus var. bisporus, and of the related variety burnettii. We identified the location of the mating-type locus using genetic map and genome information, corresponding to the HD locus, the PR locus having lost its mating-type role. We found the mip1 and ß-fg genes flanking the HD genes as in several Agaricomycetes, two copies of the ß-fg gene, an additional HD2 copy in the reference genome of A. bisporus var. bisporus and an additional HD1 copy in the reference genome of A. bisporus var. burnettii. We detected a 140 kb-long inversion between mating types in an A. bisporus var. burnettii heterokaryon, trapping the HD genes, the mip1 gene and fragments of additional genes. The two varieties had islands of transposable elements at the mating-type locus, spanning 35 kb in the A. bisporus var. burnettii reference genome. Linkage analyses showed a region with low recombination in the mating-type locus region in the A. bisporus var. burnettii variety. We found high differentiation between ß-fg alleles in both varieties, indicating an ancient event of recombination suppression, followed more recently by a suppression of recombination at the mip1 gene through the inversion in A. bisporus var. burnettii and a suppression of recombination across whole chromosomes in A. bisporus var. bisporus, constituting stepwise recombination suppression as in many other mating-type chromosomes and sex chromosomes.


Asunto(s)
Agaricus/genética , Cromosomas/genética , Genes del Tipo Sexual de los Hongos/genética , Agaricus/metabolismo , Alelos , Basidiomycota/genética , ADN de Hongos/genética , Ligamiento Genético/genética , Genoma Fúngico/genética , Recombinación Genética/genética
20.
Front Fungal Biol ; 2: 711330, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37744108

RESUMEN

The button mushroom Agaricus bisporus is represented mainly by two varieties, a secondarily homothallic variety with predominantly two heterokaryotic spores per basidia and a heterothallic variety with predominantly four homokaryotic spored basidium. Both varieties also differ in their recombination landscape with the former showing crossovers (CO) predominantly at chromosome ends whereas the latter has a more evenly distribution of CO over the chromosomes. The two varieties are compatible, and this has been used to study segregation of the basidial spore number (BSN) and the genomic positions of recombination, i.e., the CO landscape, in order to find the underlying genetic determinants. Knowledge on genes controlling CO positions might facilitate either the conservation of favorable allele combinations or the disruption of unwanted allele combinations to reduce linkage drag. For BSN, in total seven QTL were found with the major QTL on chromosome 1 explaining ca. 55% of the phenotypic variation. It appeared, however, difficult to map the recombination landscape. This phenotype can only be assessed in the meiotic offspring of an intervarietal hybrid which is a laborious and difficult task. Nevertheless, this was done, and we were able to map three QTLs for this trait, two on chromosome 1 and one on chromosome 2 not overlapping with the QTL for BSN. The hurdles encountered are discussed and a new strategy is proposed that can solves these. We propose to use two genetically unrelated mapping populations both offspring of a cross between a var. bisporus and a var. burnettii homokaryon and thus segregating both for CO and BSN. Homokaryotic offspring of both populations can be intercrossed without limitation of mating incompatibility and marker homozygosity and the hybrid mushrooms directly used to map BSN. Homokaryotic offspring of these hybrid mushrooms can be genotypes to assess CO positions using next generation sequencing technologies that will solve marker problems encountered, especially for genotyping chromosome ends. This new approach can be a useful strategy for a more efficient breeding strategy for mushrooms in general.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA