Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
PLoS Genet ; 6(10)2010 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-20949111

RESUMEN

Replicative DNA polymerases are frequently stalled by DNA lesions. The resulting replication blockage is released by homologous recombination (HR) and translesion DNA synthesis (TLS). TLS employs specialized TLS polymerases to bypass DNA lesions. We provide striking in vivo evidence of the cooperation between DNA polymerase η, which is mutated in the variant form of the cancer predisposition disorder xeroderma pigmentosum (XP-V), and DNA polymerase ζ by generating POLη(-/-)/POLζ(-/-) cells from the chicken DT40 cell line. POLζ(-/-) cells are hypersensitive to a very wide range of DNA damaging agents, whereas XP-V cells exhibit moderate sensitivity to ultraviolet light (UV) only in the presence of caffeine treatment and exhibit no significant sensitivity to any other damaging agents. It is therefore widely believed that Polη plays a very specific role in cellular tolerance to UV-induced DNA damage. The evidence we present challenges this assumption. The phenotypic analysis of POLη(-/-)/POLζ(-/-) cells shows that, unexpectedly, the loss of Polη significantly rescued all mutant phenotypes of POLζ(-/-) cells and results in the restoration of the DNA damage tolerance by a backup pathway including HR. Taken together, Polη contributes to a much wide range of TLS events than had been predicted by the phenotype of XP-V cells.


Asunto(s)
Daño del ADN , ADN Polimerasa Dirigida por ADN/genética , Mutación , Animales , Antineoplásicos/farmacología , Secuencia de Bases , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Pollos , Cisplatino/farmacología , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Células HEK293 , Humanos , Metilmetanosulfonato/farmacología , Modelos Genéticos , Datos de Secuencia Molecular , Homología de Secuencia de Ácido Nucleico , Supresión Genética , Rayos Ultravioleta
2.
J Cell Biol ; 178(2): 257-68, 2007 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-17635936

RESUMEN

In vertebrates Cdk1 is required to initiate mitosis; however, any functionality of this kinase during S phase remains unclear. To investigate this, we generated chicken DT40 mutants, in which an analog-sensitive mutant cdk1 as replaces the endogenous Cdk1, allowing us to specifically inactivate Cdk1 using bulky ATP analogs. In cells that also lack Cdk2, we find that Cdk1 activity is essential for DNA replication initiation and centrosome duplication. The presence of a single Cdk2 allele renders S phase progression independent of Cdk1, which suggests a complete overlap of these kinases in S phase control. Moreover, we find that Cdk1 inhibition did not induce re-licensing of replication origins in G2 phase. Conversely, inhibition during mitosis of Cdk1 causes rapid activation of endoreplication, depending on proteolysis of the licensing inhibitor Geminin. This study demonstrates essential functions of Cdk1 in the control of S phase, and exemplifies a chemical genetics approach to target cyclin-dependent kinases in vertebrate cells.


Asunto(s)
Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Fase S , Alelos , Animales , Proteína Quinasa CDC2/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Pollos , Inhibidores de Cisteína Proteinasa/farmacología , Geminina , Células HeLa , Humanos , Leupeptinas/farmacología , Modelos Biológicos , Mutación , Purinas/farmacología , Roscovitina
3.
Nucleic Acids Res ; 38(11): 3533-45, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20156997

RESUMEN

In eukaryotic nuclei, DNA is wrapped around an octamer of core histones to form nucleosomes, and chromatin fibers are thought to be stabilized by linker histones of the H1 type. Higher eukaryotes express multiple variants of histone H1; chickens possess six H1 variants. Here, we generated and analyzed the phenotype of a complete deletion of histone H1 genes in chicken cells. The H1-null cells showed decreased global nucleosome spacing, expanded nuclear volumes, and increased chromosome aberration rates, although proper mitotic chromatin structure appeared to be maintained. Expression array analysis revealed that the transcription of multiple genes was affected and was mostly downregulated in histone H1-deficient cells. This report describes the first histone H1 complete knockout cells in vertebrates and suggests that linker histone H1, while not required for mitotic chromatin condensation, plays important roles in nucleosome spacing and interphase chromatin compaction and acts as a global transcription regulator.


Asunto(s)
Histonas/fisiología , Nucleosomas/química , Animales , Ciclo Celular , Línea Celular , Pollos/genética , Pollos/crecimiento & desarrollo , Pollos/metabolismo , Cromatina/ultraestructura , Aberraciones Cromosómicas , Histonas/genética , Interfase/genética , Mutación , Transcripción Genética
4.
PLoS Genet ; 5(1): e1000356, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19180185

RESUMEN

Homologous recombination (HR) is initiated by DNA double-strand breaks (DSB). However, it remains unclear whether single-strand lesions also initiate HR in genomic DNA. Chicken B lymphocytes diversify their Immunoglobulin (Ig) V genes through HR (Ig gene conversion) and non-templated hypermutation. Both types of Ig V diversification are initiated by AID-dependent abasic-site formation. Abasic sites stall replication, resulting in the formation of single-stranded gaps. These gaps can be filled by error-prone DNA polymerases, resulting in hypermutation. However, it is unclear whether these single-strand gaps can also initiate Ig gene conversion without being first converted to DSBs. The Mre11-Rad50-Nbs1 (MRN) complex, which produces 3' single-strand overhangs, promotes the initiation of DSB-induced HR in yeast. We show that a DT40 line expressing only a truncated form of Nbs1 (Nbs1(p70)) exhibits defective HR-dependent DSB repair, and a significant reduction in the rate--though not the fidelity--of Ig gene conversion. Interestingly, this defective gene conversion was restored to wild type levels by overproduction of Escherichia coli SbcB, a 3' to 5' single-strand-specific exonuclease, without affecting DSB repair. Conversely, overexpression of chicken Exo1 increased the efficiency of DSB-induced gene-targeting more than 10-fold, with no effect on Ig gene conversion. These results suggest that Ig gene conversion may be initiated by single-strand gaps rather than by DSBs, and, like SbcB, the MRN complex in DT40 may convert AID-induced lesions into single-strand gaps suitable for triggering HR. In summary, Ig gene conversion and hypermutation may share a common substrate-single-stranded gaps. Genetic analysis of the two types of Ig V diversification in DT40 provides a unique opportunity to gain insight into the molecular mechanisms underlying the filling of gaps that arise as a consequence of replication blocks at abasic sites, by HR and error-prone polymerases.


Asunto(s)
Linfocitos B/metabolismo , Roturas del ADN de Cadena Simple , Región Variable de Inmunoglobulina/genética , Proteínas Nucleares/metabolismo , Recombinación Genética , Animales , Línea Celular Tumoral , Pollos , Reparación del ADN , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Conversión Génica , Región Variable de Inmunoglobulina/metabolismo , Proteínas Nucleares/genética
5.
Mol Cell Biol ; 27(8): 2812-20, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17283053

RESUMEN

Fbh1 (F-box DNA helicase 1) orthologues are conserved from Schizosaccharomyces pombe to chickens and humans. Here, we report the disruption of the FBH1 gene in DT40 cells. Although the yeast fbh1 mutant shows an increase in sensitivity to DNA damaging agents, FBH1(-)(/)(-) DT40 clones show no prominent sensitivity, suggesting that the loss of FBH1 might be compensated by other genes. However, FBH1(-)(/)(-) cells exhibit increases in both sister chromatid exchange and the formation of radial structures between homologous chromosomes without showing a defect in homologous recombination. This phenotype is reminiscent of BLM(-)(/)(-) cells and suggests that Fbh1 may be involved in preventing extensive strand exchange during homologous recombination. In addition, disruption of RAD54, a major homologous recombination factor in FBH1(-)(/)(-) cells, results in a marked increase in chromosome-type breaks (breaks on both sister chromatids at the same place) following replication fork arrest. Further, FBH1BLM cells showed additive increases in both sister chromatid exchange and the formation of radial chromosomes. These data suggest that Fbh1 acts in parallel with Bloom helicase to control recombination-mediated double-strand-break repair at replication blocks and to reduce the frequency of crossover.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Intercambio Genético , ADN Helicasas/metabolismo , Replicación del ADN , Vertebrados/metabolismo , Animales , Camptotecina/farmacología , Pollos , Cisplatino/farmacología , Intercambio Genético/efectos de los fármacos , Intercambio Genético/efectos de la radiación , Daño del ADN , ADN Helicasas/deficiencia , ADN Helicasas/genética , Replicación del ADN/efectos de los fármacos , Replicación del ADN/efectos de la radiación , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/metabolismo , Proteína del Grupo de Complementación C de la Anemia de Fanconi/deficiencia , Proteína del Grupo de Complementación C de la Anemia de Fanconi/metabolismo , Rayos gamma , Eliminación de Gen , Marcación de Gen , Inestabilidad Genómica/efectos de los fármacos , Inestabilidad Genómica/efectos de la radiación , Metilmetanosulfonato/farmacología , Modelos Genéticos , Datos de Secuencia Molecular , Mutación/genética , RecQ Helicasas , Rayos Ultravioleta
6.
Mol Cell Biol ; 26(23): 8892-900, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16982685

RESUMEN

REV1 protein is a eukaryotic member of the Y family of DNA polymerases involved in the tolerance of DNA damage by replicative bypass. The precise role(s) of REV1 in this process is not known. Here we show, by using the yeast two-hybrid assay and the glutathione S-transferase pull-down assay, that mouse REV1 can physically interact with ubiquitin. The association of REV1 with ubiquitin requires the ubiquitin-binding motifs (UBMs) located at the C terminus of REV1. The UBMs also mediate the enhanced association between monoubiquitylated PCNA and REV1. In cells exposed to UV radiation, the association of REV1 with replication foci is dependent on functional UBMs. The UBMs of REV1 are shown to contribute to DNA damage tolerance and damage-induced mutagenesis in vivo.


Asunto(s)
Daño del ADN , Nucleotidiltransferasas/química , Nucleotidiltransferasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Células COS , Línea Celular , Línea Celular Transformada , Transformación Celular Viral , Pollos , Chlorocebus aethiops , ADN Polimerasa Dirigida por ADN , Glutatión Transferasa/metabolismo , Datos de Secuencia Molecular , Nucleotidiltransferasas/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos , Ubiquitina/metabolismo , Rayos Ultravioleta
7.
Cancer Res ; 67(18): 8536-43, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17875693

RESUMEN

Proteasome inhibitors are novel antitumor agents against multiple myeloma and other malignancies. Despite the increasing clinical application, the molecular basis of their antitumor effect has been poorly understood due to the involvement of the ubiquitin-proteasome pathway in multiple cellular metabolisms. Here, we show that treatment of cells with proteasome inhibitors has no significant effect on nonhomologous end joining but suppresses homologous recombination (HR), which plays a key role in DNA double-strand break (DSB) repair. In this study, we treat human cells with proteasome inhibitors and show that the inhibition of the proteasome reduces the efficiency of HR-dependent repair of an artificial HR substrate. We further show that inhibition of the proteasome interferes with the activation of Rad51, a key factor for HR, although it does not affect the activation of ATM, gammaH2AX, or Mre11. These data show that the proteasome-mediated destruction is required for the promotion of HR at an early step. We suggest that the defect in HR-mediated DNA repair caused by proteasome inhibitors contributes to antitumor effect, as HR plays an essential role in cellular proliferation. Moreover, because HR plays key roles in the repair of DSBs caused by chemotherapeutic agents such as cisplatin and by radiotherapy, proteasome inhibitors may enhance the efficacy of these treatments through the suppression of HR-mediated DNA repair pathways.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Cisteína Proteinasa/farmacología , Roturas del ADN de Doble Cadena , Reparación del ADN/efectos de los fármacos , Leupeptinas/farmacología , Inhibidores de Proteasoma , Recombinación Genética/efectos de los fármacos , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Fibroblastos/fisiología , Genes BRCA1 , Células HeLa , Humanos , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Recombinasa Rad51/metabolismo , Proteínas Supresoras de Tumor/metabolismo
8.
DNA Repair (Amst) ; 6(11): 1584-95, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17613284

RESUMEN

In Saccharomyces cerevisiae, the linker histone HHO1 is involved in DNA repair. In higher eukaryotes, multiple variants of linker histone H1 exist but their involvement in the DNA damage response is unknown. To address this issue, we examined sensitivity to genotoxic agents in chicken DT40 cells lacking specific H1 variants. Among the six H1 variant mutants, only H1R(-/-) DT40 cells exhibited increased sensitivity to the alkylating agent methyl-methanesulfonate (MMS). The MMS sensitivity of H1R(-/-) cells was not enhanced by inactivation of Rad54. H1R(-/-) DT40 cells also exhibited: (i) a reduction in gene targeting efficiencies, (ii) impaired sister chromatid exchange, and (iii) an accumulation of IR-induced chromosomal aberrations at the G2 phase, all of which indicate the involvement of H1R in the Rad54-mediated homologous recombination (HR) pathway. The mobility of H1R but not H1L in the nucleus decreased after MMS treatment and the repair of double-stranded breaks generated by I-SceI was unaffected in H1R(-/-) cells, suggesting that H1R integrates into HR-mediated repair pathways at the chromosome structure level. Together, these findings provide the first genetic evidence that a specific H1 variant plays a unique and important role in the DNA damage response in vertebrates.


Asunto(s)
Daño del ADN/fisiología , Reparación del ADN/fisiología , Variación Genética , Histonas/fisiología , Animales , Núcleo Celular/metabolismo , Células Cultivadas , Pollos , Histonas/genética , Histonas/metabolismo , Metilmetanosulfonato/farmacología , Recombinación Genética , Intercambio de Cromátides Hermanas , Factores de Tiempo
9.
DNA Repair (Amst) ; 6(3): 280-92, 2007 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-17123873

RESUMEN

One of the earliest events in the signal transduction cascade that initiates a DNA damage checkpoint is the phosphorylation on serine 139 of histone H2AX (gammaH2AX) at DNA double-strand breaks (DSBs). However, the role of gammaH2AX in DNA repair is poorly understood. To address this question, we generated chicken DT40 cells carrying a serine to alanine mutation at position 139 of H2AX (H2AX(-/S139A)) and examined their DNA repair capacity. H2AX(-/S139A) cells exhibited defective homologous recombinational repair (HR) as manifested by delayed Rad51 focus formation following ionizing radiation (IR) and hypersensitivity to the topoisomerase I inhibitor, camptothecin (CPT), which causes DSBs at replication blockage. Deletion of the Rad51 paralog gene, XRCC3, also delays Rad51 focus formation. To test the interaction of Xrcc3 and gammaH2AX, we disrupted XRCC3 in H2AX(-/S139A) cells. XRCC3(-/-)/H2AX(-/S139A) mutants were not viable, although this synthetic lethality was reversed by inserting a transgene that conditionally expresses wild-type H2AX. Upon repression of the wild-type H2AX transgene, XRCC3(-/-)/H2AX(-/S139A) cells failed to form Rad51 foci and exhibited markedly increased levels of chromosomal aberrations after CPT treatment. These results indicate that H2AX and XRCC3 act in separate arms of a branched pathway to facilitate Rad51 assembly.


Asunto(s)
Proteínas Aviares/fisiología , Reparación del ADN/fisiología , Proteínas de Unión al ADN/fisiología , Histonas/fisiología , Recombinasa Rad51/metabolismo , Recombinación Genética , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Camptotecina/farmacología , Células Cultivadas , Pollos , Daño del ADN/fisiología , Proteínas de Unión al ADN/genética , Inhibidores Enzimáticos/farmacología , Rayos gamma , Inestabilidad Genómica , Histonas/genética , Modelos Genéticos , Recombinasa Rad51/genética , Transfección
10.
DNA Repair (Amst) ; 6(6): 869-75, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17363341

RESUMEN

DNA polymerase lambda (Pol lambda) is a DNA polymerase beta (Pol beta)-like enzyme with both DNA synthetic and 5'-deoxyribose-5'-phosphate lyase domains. Recent biochemical studies implicated Pol lambda as a backup enzyme to Pol beta in the mammalian base excision repair (BER) pathway. To examine the interrelationship between Pol lambda and Pol beta in BER of DNA damage in living cells, we disrupted the genes for both enzymes either singly or in combination in the chicken DT40 cell line and then characterized BER phenotypes. Disruption of the genes for both polymerases caused hypersensitivity to H(2)O(2)-induced cytotoxicity, whereas the effect of disruption of either polymerase alone was only modest. Similarly, BER capacity in cells after H(2)O(2) exposure was lower in Pol beta(-/-)/Pol lambda(-/-) cells than in Pol beta(-/-), wild-type, and Pol lambda(-/-) cells, which were equivalent. These results suggest that these polymerases can complement for one another in counteracting oxidative DNA damage. Similar results were obtained in assays for in vitro BER capacity using cell extracts. With MMS-induced cytotoxicity, there was no significant effect on either survival or BER capacity from Pol lambda gene disruption. A strong hypersensitivity and reduction in BER capacity was observed for Pol beta(-/-)/Pol lambda(-/-) and Pol beta(-/-) cells, suggesting that Pol beta had a dominant role in counteracting alkylation DNA damage in this cell system.


Asunto(s)
Daño del ADN , ADN Polimerasa beta/fisiología , Reparación del ADN , Animales , Línea Celular , Supervivencia Celular , Pollos , Relación Dosis-Respuesta a Droga , Peróxido de Hidrógeno/farmacología , Modelos Genéticos , NADP/metabolismo , Oxígeno/metabolismo , Plásmidos/metabolismo
11.
Biochem Biophys Res Commun ; 371(2): 225-9, 2008 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-18433721

RESUMEN

ASCIZ (ATMIN) was recently identified as a novel DNA damage response protein. Here we report that ASCIZ-deficient chicken DT40 B lymphocyte lines displayed markedly increased Ig gene conversion rates, whereas overexpression of human ASCIZ reduced Ig gene conversion below wild-type levels. However, neither the efficiency of double-strand break repair nor hypermutation was affected by ASCIZ levels, indicating that ASCIZ does not directly control homologous recombination or formation of abasic sites. Loss of ASCIZ led to mild sensitivity to the base damaging agent methylmethane sulfonate (MMS), yet remarkably, suppressed the dramatic MMS hypersensitivity of polbeta-deficient cells. These data suggest that ASCIZ may affect the choice between competing base repair pathways in a manner that reduces the amount of substrates available for Ig gene conversion.


Asunto(s)
Alquilantes/farmacología , Proteínas Portadoras/metabolismo , Daño del ADN/genética , Reparación del ADN/genética , Conversión Génica , Genes de Inmunoglobulinas/genética , Animales , Proteínas Portadoras/genética , Línea Celular , ADN Polimerasa beta/genética , Resistencia a Medicamentos/genética , Humanos , Metilmetanosulfonato/farmacología , Ratones , Ratones Transgénicos , Mutágenos/farmacología , Proteínas Nucleares , Supresión Genética , Factores de Transcripción
12.
Mol Cell Biol ; 25(14): 6103-11, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15988022

RESUMEN

In yeast, Rev1, Rev3, and Rev7 are involved in translesion synthesis over various kinds of DNA damage and spontaneous and UV-induced mutagenesis. Here, we disrupted Rev1, Rev3, and Rev7 in the chicken B-lymphocyte line DT40. REV1-/- REV3-/- REV7-/- cells showed spontaneous cell death, chromosomal instability/fragility, and hypersensitivity to various genotoxic treatments as observed in each of the single mutants. Surprisingly, the triple-knockout cells showed a suppressed level of sister chromatid exchanges (SCEs), which may reflect postreplication repair events mediated by homologous recombination, while each single mutant showed an elevated SCE level. Furthermore, REV1-/- cells as well as triple mutants showed a decreased level of immunoglobulin gene conversion, suggesting participation of Rev1 in a recombination-based pathway. The present study gives us a new insight into cooperative function of three Rev molecules and the Polzeta (Rev3-Rev7)-independent role of Rev1 in vertebrate cells.


Asunto(s)
Reparación del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/fisiología , Recombinación Genética/genética , Animales , Linfocitos B/enzimología , Línea Celular , Pollos/genética , Daño del ADN/genética , Genes de Inmunoglobulinas/genética , Mutagénesis , Mutación , Fenotipo
13.
Mol Cell Biol ; 25(16): 6948-55, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16055708

RESUMEN

Homologous recombination (HR) requires nuclease activities at multiple steps, but the contribution of individual nucleases to the processing of double-strand DNA ends at different stages of HR has not been clearly defined. We used chicken DT40 cells to investigate the role of flap endonuclease 1 (Fen-1) in HR. FEN-1-deficient cells exhibited a significant decrease in the efficiency of immunoglobulin gene conversion while being proficient in recombination between sister chromatids, suggesting that Fen-1 may play a role in HR between sequences of considerable divergence. To clarify whether sequence divergence at DNA ends is truly the reason for the observed HR defect in FEN-1(-/-) cells we inserted a unique I-SceI restriction site in the genome and tested various donor and recipient HR substrates. We found that the efficiency of HR-mediated DNA repair was indeed greatly diminished when divergent sequences were present at the DNA break site. We conclude that Fen-1 eliminates heterologous sequences at DNA damage site and facilitates DNA repair by HR.


Asunto(s)
Daño del ADN , Endonucleasas de ADN Solapado/fisiología , Recombinación Genética , Animales , Secuencia de Bases , Ciclo Celular , Pollos , ADN/química , Reparación del ADN , ADN Complementario/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/farmacología , Endonucleasas de ADN Solapado/metabolismo , Citometría de Flujo , Rayos gamma , Cinética , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Plásmidos/metabolismo , Proteínas de Saccharomyces cerevisiae , Homología de Secuencia de Ácido Nucleico , Intercambio de Cromátides Hermanas , Factores de Tiempo , Transfección
14.
Mol Cell Biol ; 25(3): 1124-34, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15657438

RESUMEN

BRCA2 is a tumor suppressor gene that is linked to hereditary breast and ovarian cancer. Although the Brca2 protein participates in homologous DNA recombination (HR), its precise role remains unclear. From chicken DT40 cells, we generated BRCA2 gene-deficient cells which harbor a truncation at the 3' end of the BRC3 repeat (brca2tr). Comparison of the characteristics of brca2tr cells with those of other HR-deficient DT40 clones revealed marked similarities with rad51 paralog mutants (rad51b, rad51c, rad51d, xrcc2, or xrcc3 cells). The phenotypic similarities include a shift from HR-mediated diversification to single-nucleotide substitutions in the immunoglobulin variable gene segment and the partial reversion of this shift by overexpression of Rad51. Although recent evidence supports at least Xrcc3 and Rad51C playing a role late in HR, our data suggest that Brca2 and the Rad51 paralogs may also contribute to HR at the same early step, with their loss resulting in the stimulation of an alternative, error-prone repair pathway.


Asunto(s)
Proteína BRCA2/metabolismo , Proteínas de Unión al ADN/metabolismo , Región Variable de Inmunoglobulina/genética , Mutación/genética , Recombinación Genética/genética , Animales , Proteínas Aviares , Proteína BRCA2/genética , Células Cultivadas , Pollos , Proteínas de Unión al ADN/genética , Conversión Génica/genética , Región Variable de Inmunoglobulina/inmunología , Recombinasa Rad51
15.
J Radiat Res ; 49(2): 93-103, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18285658

RESUMEN

DNA double strand break (DSB) is one of the most critical types of damage which is induced by ionizing radiation. In this review, we summarize current progress in investigations on the function of DSB repair-related proteins. We focused on recent findings in the analysis of the function of proteins such as 53BP1, histone H2AX, Mus81-Eme1, Fanc complex, and UBC13, which are found to be related to homologous recombination repair or to non-homologous end joining. In addition to the function of these proteins in DSB repair, the biological function of nuclear foci formation following DSB induction is discussed.


Asunto(s)
Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/fisiología , Proteínas de Ciclo Celular/fisiología , Proteínas de Unión al ADN/fisiología , Endonucleasas/fisiología , Histonas/fisiología , Humanos , Proteínas Nucleares/fisiología , Transducción de Señal/fisiología , Enzimas Ubiquitina-Conjugadoras/fisiología
16.
Cancer Res ; 66(2): 748-54, 2006 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-16424005

RESUMEN

Nitric oxide (NO), a signal transmitter involved in inflammation and regulation of smooth muscle and neurons, seems to cause mutagenesis, but its mechanisms have remained elusive. To gain an insight into NO-induced genotoxicity, we analyzed the effect of NO on a panel of chicken DT40 clones deficient in DNA repair pathways, including base and nucleotide excision repair, double-strand break repair, and translesion DNA synthesis (TLS). Our results show that cells deficient in Rev1 and Rev3, a subunit essential for DNA polymerase zeta (Polzeta), are hypersensitive to killing by two chemical NO donors, spermine NONOate and S-nitroso-N-acetyl-penicillamine. Mitotic chromosomal analysis indicates that the hypersensitivity is caused by a significant increase in the level of induced chromosomal breaks. The data reveal the critical role of TLS polymerases in cellular tolerance to NO-induced DNA damage and suggest the contribution of these error-prone polymerases to accumulation of single base substitutions.


Asunto(s)
Daño del ADN , Óxido Nítrico/toxicidad , Nucleotidiltransferasas/fisiología , Animales , Técnicas de Cultivo de Célula , Pollos , Aberraciones Cromosómicas , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Mutación Puntual
17.
DNA Repair (Amst) ; 5(9-10): 1021-9, 2006 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-16807135

RESUMEN

Repair of DNA double strand breaks (DSBs) plays a critical role in the maintenance of the genome. DSB arise frequently as a consequence of replication fork stalling and also due to the attack of exogenous agents. Repair of broken DNA is essential for survival. Two major pathways, homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to deal with these lesions, and are conserved from yeast to vertebrates. Despite the conservation of these pathways, their relative contribution to DSB repair varies greatly between these two species. HR plays a dominant role in any DSB repair in yeast, whereas NHEJ significantly contributes to DSB repair in vertebrates. This active NHEJ requires a regulatory mechanism to choose HR or NHEJ in vertebrate cells. In this review, we illustrate how HR and NHEJ are differentially regulated depending on the phase of cell cycle and on the nature of the DSB.


Asunto(s)
Rotura Cromosómica , Reparación del ADN , Replicación del ADN , Recombinación Genética , Saccharomyces cerevisiae/genética , Animales , Proteínas de Unión al ADN/genética , Humanos , Modelos Genéticos , Proteínas de Saccharomyces cerevisiae/genética
18.
DNA Repair (Amst) ; 5(11): 1307-16, 2006 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-16931176

RESUMEN

In Saccharomyces cerevisiae, Rad18 functions in post-replication repair pathways, such as error-free damage bypass involving Rad30 (Poleta) and error-prone damage bypass involving Rev3/7 (Polzeta). Chicken DT40 RAD18(-/-) cells were found to be hypersensitive to camptothecin (CPT), while RAD30(-/-) and REV3(-/-) cells, which are defective in translesion DNA synthesis, were not. RAD18(-/-) cells also showed higher levels of H2AX phosphorylation and chromosomal aberrations, particularly chromosomal gaps and breaks, upon exposure to CPT. Detailed analysis by alkaline sucrose density gradient centrifugation revealed that RAD18(-/-) and wild type cells exhibited similar rates of elongation of newly synthesized DNA in the presence or absence of low concentrations of CPT but that DNA breaks frequently occurred on both parental and nascent strands within 1h after a brief exposure to an elevated concentration of CPT, with more breaks induced in RAD18(-/-) cells than in wild type cells. These data suggest a previously unanticipated role for Rad18 in dealing with replication forks upon encountering DNA lesions induced by CPT.


Asunto(s)
Camptotecina/toxicidad , Daño del ADN , Reparación del ADN/fisiología , Proteínas de Unión al ADN/fisiología , Animales , Línea Celular , Pollos/genética , Pollos/metabolismo , ADN/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/fisiología , Genoma
19.
Nucleic Acids Res ; 33(14): 4544-52, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16093548

RESUMEN

Metazoan Rad51 plays a central role in homologous DNA recombination, and its activity is controlled by a number of Rad51 cofactors. These include five Rad51 paralogs, Rad51B, Rad51C, Rad51D, XRCC2 and XRCC3. We previously hypothesized that all five paralogs participate collaboratively in repair. However, this idea was challenged by the biochemical identification of two independent complexes composed of either Rad51B/C/D/XRCC2 or Rad51C/XRCC3. To investigate if this biochemical finding is matched by genetic interactions, we made double mutants in either the same complex (rad51b/rad51d) or in both complexes (xrcc3/rad51d). In agreement with the biochemical findings the double deletion involving both complexes had an additive effect on the sensitivity to camptothecin and cisplatin. The double deletion of genes in the same complex, on the other hand, did not further increase the sensitivity to these agents. Conversely, all mutants tested displayed comparatively mild sensitivity to gamma-irradiation and attenuated gamma-irradiation-induced Rad51 foci formation. Thus, in accord with our previous conclusion, all paralogs appear to collaboratively facilitate Rad51 action. In conclusion, our detailed genetic study reveals a complex interplay between the five Rad51 paralogs and suggests that some of the Rad51 paralogs can separately operate in later step of homologous recombination.


Asunto(s)
Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/fisiología , Recombinación Genética , Animales , Camptotecina/toxicidad , Línea Celular , Cromátides , Rotura Cromosómica , Cisplatino/toxicidad , Replicación del ADN , Proteínas de Unión al ADN/genética , Eliminación de Gen , Ratones , Radiación Ionizante
20.
Subcell Biochem ; 40: 415-8, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17623932

RESUMEN

Synchronization of cells is essential to study cell cycle specific events. If, for example, one suspects that a given DNA repair pathway is used in a particular cell cycle phase, the protocol can be used to enrich cells in each phase of the cell cycle and analyze the cellular response to DNA damage. Synchronization is also useful, when a gene is essential for a particular phase of the cell cycle. If a gene is, for example, essential for mitosis, synchronization of the cells in G1 phase with concomitant inactivation of the gene enables us to study the function of the gene in interphase, and to follow synchronous cell cycle progression to M phase. Two synchronization methods: centrifugal elutriation to enrich G1, S or G2 phase cells and nocodazole-mimocine sequential treatment to enrich cells at the G1/S boundary are described. Centrifugal elutriation can be achieved in less time (0.5-2 h) and with very little physiological stress to the cells whereas synchronization by drugs, such as nocodazole and mimocine, may result in unfavorable side effects.


Asunto(s)
Ciclo Celular , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular , Pollos , Isoquinolinas/farmacología , Nocodazol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA