Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 182(2): 429-446.e14, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32526206

RESUMEN

The mode of acquisition and causes for the variable clinical spectrum of coronavirus disease 2019 (COVID-19) remain unknown. We utilized a reverse genetics system to generate a GFP reporter virus to explore severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis and a luciferase reporter virus to demonstrate sera collected from SARS and COVID-19 patients exhibited limited cross-CoV neutralization. High-sensitivity RNA in situ mapping revealed the highest angiotensin-converting enzyme 2 (ACE2) expression in the nose with decreasing expression throughout the lower respiratory tract, paralleled by a striking gradient of SARS-CoV-2 infection in proximal (high) versus distal (low) pulmonary epithelial cultures. COVID-19 autopsied lung studies identified focal disease and, congruent with culture data, SARS-CoV-2-infected ciliated and type 2 pneumocyte cells in airway and alveolar regions, respectively. These findings highlight the nasal susceptibility to SARS-CoV-2 with likely subsequent aspiration-mediated virus seeding to the lung in SARS-CoV-2 pathogenesis. These reagents provide a foundation for investigations into virus-host interactions in protective immunity, host susceptibility, and virus pathogenesis.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Neumonía Viral/patología , Neumonía Viral/virología , Sistema Respiratorio/virología , Genética Inversa/métodos , Anciano , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Betacoronavirus/inmunología , Betacoronavirus/patogenicidad , COVID-19 , Línea Celular , Células Cultivadas , Chlorocebus aethiops , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/terapia , Fibrosis Quística/patología , ADN Recombinante , Femenino , Furina/metabolismo , Humanos , Inmunización Pasiva , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Masculino , Persona de Mediana Edad , Mucosa Nasal/metabolismo , Mucosa Nasal/patología , Mucosa Nasal/virología , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/inmunología , Sistema Respiratorio/patología , SARS-CoV-2 , Serina Endopeptidasas/metabolismo , Células Vero , Virulencia , Replicación Viral , Sueroterapia para COVID-19
2.
Nature ; 604(7904): 111-119, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35355018

RESUMEN

Mapping the spatial distribution and molecular identity of constituent cells is essential for understanding tissue dynamics in health and disease. We lack a comprehensive map of human distal airways, including the terminal and respiratory bronchioles (TRBs), which are implicated in respiratory diseases1-4. Here, using spatial transcriptomics and single-cell profiling of microdissected distal airways, we identify molecularly distinct TRB cell types that have not-to our knowledge-been previously characterized. These include airway-associated LGR5+ fibroblasts and TRB-specific alveolar type-0 (AT0) cells and TRB secretory cells (TRB-SCs). Connectome maps and organoid-based co-cultures reveal that LGR5+ fibroblasts form a signalling hub in the airway niche. AT0 cells and TRB-SCs are conserved in primates and emerge dynamically during human lung development. Using a non-human primate model of lung injury, together with human organoids and tissue specimens, we show that alveolar type-2 cells in regenerating lungs transiently acquire an AT0 state from which they can differentiate into either alveolar type-1 cells or TRB-SCs. This differentiation programme is distinct from that identified in the mouse lung5-7. Our study also reveals mechanisms that drive the differentiation of the bipotent AT0 cell state into normal or pathological states. In sum, our findings revise human lung cell maps and lineage trajectories, and implicate an epithelial transitional state in primate lung regeneration and disease.


Asunto(s)
Linaje de la Célula , Pulmón , Células Madre , Células Epiteliales Alveolares , Animales , Diferenciación Celular , Conectoma , Fibroblastos , Perfilación de la Expresión Génica , Humanos , Pulmón/citología , Enfermedades Pulmonares , Ratones , Organoides , Primates , Regeneración , Análisis de la Célula Individual , Células Madre/citología
3.
EMBO J ; 39(21): e106697, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33001445

RESUMEN

Stem cell-derived organoid models have emerged as a valuable tool for studying organogenesis, cell-to-cell stromal communication and disease. In this issue, Vazquez-Armendariz et al (2020) report a murine lung stem cell-based bronchioalveolar organoid system and provide insights into the effect of co-culturing with immune and mesenchymal cells.


Asunto(s)
Pulmón , Organoides , Animales , Comunicación Celular , Ratones , Organogénesis , Células Madre
4.
Biochemistry (Mosc) ; 87(2): 131-140, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35508910

RESUMEN

Loss of eye lens transparency due to cataract is the leading cause of blindness all over the world. While aggregation of lens crystallins is the most common endpoint in various types of cataracts, chaperone-like activity (CLA) of α-crystallin preventing protein aggregation is considered to be important for maintaining the eye lens transparency. Osmotic stress due to increased accumulation of sorbitol under hyperglycemic conditions is believed to be one of the mechanisms for diabetic cataract. In addition, compromised CLA of α-crystallin in diabetic cataract has been reported. However, the effect of sorbitol on the structure and function of α-crystallin has not been elucidated yet. Hence, in the present exploratory study, we described the effect of varying concentrations of sorbitol on the structure and function of α-crystallin. Alpha-crystallin purified from the rat lens was incubated with varying concentrations of sorbitol in the dark under sterile conditions for up to 5 days. At the end of incubation, structural properties and CLA were evaluated by spectroscopic methods. Interestingly, different concentrations of sorbitol showed contrasting results: at lower concentrations (5 and 50 mM) there was a decrease in CLA and subtle alterations in secondary and tertiary structure but not at higher concentrations (500 mM). Though, these results shed a light on the effect of sorbitol on α-crystallin structure-function, further studies are required to understand the mechanism of the observed effects and their implication to cataractogenesis.


Asunto(s)
Catarata , Diabetes Mellitus , Cristalino , alfa-Cristalinas , Animales , Cristalino/metabolismo , Chaperonas Moleculares/metabolismo , Ratas , Sorbitol/farmacología , alfa-Cristalinas/química , alfa-Cristalinas/metabolismo , alfa-Cristalinas/farmacología
5.
Am J Physiol Lung Cell Mol Physiol ; 313(5): L796-L806, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28775096

RESUMEN

IL-4 and IL-13 are major T-helper cell (Th) 2 cytokines implicated in the pathogenesis of several lung diseases, including pulmonary fibrosis. In this study, using a novel repetitive intradermal bleomycin model in which mice develop extensive lung fibrosis and a progressive decline in lung function compared with saline-treated control mice, we investigated profibrotic functions of Th2 cytokines. To determine the role of IL-13 signaling in the pathogenesis of bleomycin-induced pulmonary fibrosis, wild-type, IL-13, and IL-4Rα-deficient mice were treated with bleomycin, and lungs were assessed for changes in lung function and pulmonary fibrosis. Histological staining and lung function measurements demonstrated that collagen deposition and lung function decline were attenuated in mice deficient in either IL-13 or IL-4Rα-driven signaling compared with wild-type mice treated with bleomycin. Furthermore, our results demonstrated that IL-13 and IL-4Rα-driven signaling are involved in excessive migration of macrophages and fibroblasts. Notably, our findings demonstrated that IL-13-driven migration involves increased phospho-focal adhesion kinase signaling and F-actin polymerization. Importantly, in vivo findings demonstrated that IL-13 augments matrix metalloproteinase (MMP)-2 and MMP9 activity that has also been shown to increase migration and invasiveness of fibroblasts in the lungs during bleomycin-induced pulmonary fibrosis. Together, our findings demonstrate a pathogenic role for Th2-cytokine signaling that includes excessive migration and protease activity involved in severe fibrotic lung disease.


Asunto(s)
Bleomicina/farmacología , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Células Th2/efectos de los fármacos , Animales , Bleomicina/administración & dosificación , Citocinas/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Pulmón/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fibrosis Pulmonar/patología , Células Th2/inmunología
6.
J Immunol ; 195(8): 3978-91, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26371248

RESUMEN

Collagen-producing myofibroblast transdifferentiation is considered a crucial determinant in the formation of scar tissue in the lungs of patients with idiopathic pulmonary fibrosis. Multiple resident pulmonary cell types and bone marrow-derived fibrocytes have been implicated as contributors to fibrotic lesions because of the transdifferentiation potential of these cells into myofibroblasts. In this study, we assessed the expression of Wilms tumor 1 (WT1), a known marker of mesothelial cells, in various cell types in normal and fibrotic lungs. We demonstrate that WT1 is expressed by both mesothelial and mesenchymal cells in idiopathic pulmonary fibrosis lungs but has limited or no expression in normal human lungs. We also demonstrate that WT1(+) cells accumulate in fibrotic lung lesions, using two different mouse models of pulmonary fibrosis and WT1 promoter-driven fluorescent reporter mice. Reconstitution of bone marrow cells into a TGF-α transgenic mouse model demonstrated that fibrocytes do not transform into WT1(+) mesenchymal cells, but they do augment accumulation of WT1(+) cells in severe fibrotic lung disease. Importantly, the number of WT1(+) cells in fibrotic lesions was correlated with severity of lung disease as assessed by changes in lung function, histology, and hydroxyproline levels in mice. Finally, inhibition of WT1 expression was sufficient to attenuate collagen and other extracellular matrix gene production by mesenchymal cells from both murine and human fibrotic lungs. Thus, the results of this study demonstrate a novel association between fibrocyte-driven WT1(+) cell accumulation and severe fibrotic lung disease.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Fibrosis Pulmonar Idiopática/inmunología , Pulmón/inmunología , Proteínas Represoras/inmunología , Proteínas WT1/inmunología , Animales , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/inmunología , Femenino , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Masculino , Ratones , Ratones Transgénicos , Proteínas Represoras/genética , Factor de Crecimiento Transformador alfa/genética , Factor de Crecimiento Transformador alfa/inmunología , Proteínas WT1/genética
7.
Am J Respir Cell Mol Biol ; 55(6): 792-803, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27438654

RESUMEN

The p70 ribosomal S6 kinase (p70S6K) is a downstream substrate that is phosphorylated and activated by the mammalian target of rapamycin complex and regulates multiple cellular processes associated with pulmonary fibrogenesis. Two isoforms of the p70S6K have been identified (S6K1 and S6K2), but their relative contributions in mediating pulmonary fibrosis are unknown. To interrogate the roles of the p70S6K isoforms, we overexpressed transforming growth factor (TGF)-α in mice deficient for the S6K1 or S6K2 genes and measured changes in lung histology, morphometry, total lung collagen, lung function, and proliferation between wild-type and isoform-deficient mice. Deficiency of S6K1, but not S6K2, had a significant effect on reducing proliferation in subpleural fibrotic lesions during TGF-α-induced fibrosis. Migration was significantly decreased in mesenchymal cells isolated from the lungs of S6K1 knockout mice compared with wild-type or S6K2 knockout mice. Conversely, increases in subpleural thickening were significantly decreased in S6K2-deficient mice compared with wild type. Deficiency of S6K2 significantly reduced phosphorylation of the downstream S6 ribosomal protein in lung homogenates and isolated mesenchymal cells after TGF-α expression. However, deficiency of neither isoform alone significantly altered TGF-α-induced collagen accumulation or lung function decline in vivo. Furthermore, deficiency in neither isoform prevented changes in collagen accumulation or lung compliance decline after administration of intradermal bleomycin. Together, these findings demonstrate that the p70S6K isoforms have unique and redundant functions in mediating fibrogenic processes, including proliferation, migration, and S6 phosphorylation, signifying that both isoforms must be targeted to modulate p70S6K-mediated pulmonary fibrosis.


Asunto(s)
Movimiento Celular , Mesodermo/patología , Fibrosis Pulmonar/enzimología , Fibrosis Pulmonar/patología , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Animales , Bleomicina , Proliferación Celular , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Isoenzimas/metabolismo , Antígeno Ki-67/metabolismo , Pulmón/metabolismo , Pulmón/patología , Pulmón/fisiopatología , Ratones Transgénicos , Fosforilación , Fibrosis Pulmonar/fisiopatología , Proteínas Quinasas S6 Ribosómicas 70-kDa/deficiencia , Transducción de Señal , Factor de Crecimiento Transformador alfa/metabolismo
8.
J Biol Chem ; 290(21): 13510-20, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25847241

RESUMEN

Interleukin 31 receptor α (IL-31RA) is a novel Type I cytokine receptor that pairs with oncostatin M receptor to mediate IL-31 signaling. Binding of IL-31 to its receptor results in the phosphorylation and activation of STATs, MAPK, and JNK signaling pathways. IL-31 plays a pathogenic role in tissue inflammation, particularly in allergic diseases. Recent studies demonstrate IL-31RA expression and signaling in non-hematopoietic cells, but this receptor is poorly studied in immune cells. Macrophages are key immune-effector cells that play a critical role in Th2-cytokine-mediated allergic diseases. Here, we demonstrate that Th2 cytokines IL-4 and IL-13 are capable of up-regulating IL-31RA expression on both peritoneal and bone marrow-derived macrophages from mice. Our data also demonstrate that IL-4Rα-driven IL-31RA expression is STAT6 dependent in macrophages. Notably, the inflammation-associated genes Fizz1 and serum amyloid A (SAA) are significantly up-regulated in M2 macrophages stimulated with IL-31, but not in IL-4 receptor-deficient macrophages. Furthermore, the absence of Type II IL-4 receptor signaling is sufficient to attenuate the expression of IL-31RA in vivo during allergic asthma induced by soluble egg antigen, which may suggest a role for IL-31 signaling in Th2 cytokine-driven inflammation and allergic responses. Our study reveals an important counter-regulatory role between Th2 cytokine and IL-31 signaling involved in allergic diseases.


Asunto(s)
Asma/metabolismo , Regulación de la Expresión Génica , Inflamación/metabolismo , Interleucinas/metabolismo , Macrófagos/inmunología , Receptores de Interleucina/fisiología , Factor de Transcripción STAT6/metabolismo , Células Th2/inmunología , Animales , Asma/etiología , Asma/patología , Western Blotting , Células Cultivadas , Inmunoprecipitación de Cromatina , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Inflamación/etiología , Inflamación/patología , Interleucina-13/farmacología , Interleucina-4/farmacología , Interleucinas/genética , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT6/genética , Schistosoma mansoni/patogenicidad , Esquistosomiasis mansoni/complicaciones , Esquistosomiasis mansoni/parasitología , Células Th2/metabolismo
9.
Cell Rep ; 43(4): 114076, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607917

RESUMEN

The severe acute respiratory syndrome coronavirus 2 pandemic is characterized by the emergence of novel variants of concern (VOCs) that replace ancestral strains. Here, we dissect the complex selective pressures by evaluating variant fitness and adaptation in human respiratory tissues. We evaluate viral properties and host responses to reconstruct forces behind D614G through Omicron (BA.1) emergence. We observe differential replication in airway epithelia, differences in cellular tropism, and virus-induced cytotoxicity. D614G accumulates the most mutations after infection, supporting zoonosis and adaptation to the human airway. We perform head-to-head competitions and observe the highest fitness for Gamma and Delta. Under these conditions, RNA recombination favors variants encoding the B.1.617.1 lineage 3' end. Based on viral growth kinetics, Alpha, Gamma, and Delta exhibit increased fitness compared to D614G. In contrast, the global success of Omicron likely derives from increased transmission and antigenic variation. Our data provide molecular evidence to support epidemiological observations of VOC emergence.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/fisiología , SARS-CoV-2/genética , COVID-19/virología , COVID-19/transmisión , Replicación Viral , Mutación/genética , Mucosa Respiratoria/virología , Aptitud Genética , Animales , Células Epiteliales/virología , Chlorocebus aethiops , Adaptación Fisiológica/genética , Células Vero
10.
Nat Microbiol ; 8(10): 1820-1833, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37749254

RESUMEN

The pathogenic and cross-species transmission potential of SARS-CoV-2-related coronaviruses (CoVs) remain poorly characterized. Here we recovered a wild-type pangolin (Pg) CoV GD strain including derivatives encoding reporter genes using reverse genetics. In primary human cells, PgCoV replicated efficiently but with reduced fitness and showed less efficient transmission via airborne route compared with SARS-CoV-2 in hamsters. PgCoV was potently inhibited by US Food and Drug Administration approved drugs, and neutralized by COVID-19 patient sera and SARS-CoV-2 therapeutic antibodies in vitro. A pan-Sarbecovirus antibody and SARS-CoV-2 S2P recombinant protein vaccine protected BALB/c mice from PgCoV infection. In K18-hACE2 mice, PgCoV infection caused severe clinical disease, but mice were protected by a SARS-CoV-2 human antibody. Efficient PgCoV replication in primary human cells and hACE2 mice, coupled with a capacity for airborne spread, highlights an emergence potential. However, low competitive fitness, pre-immune humans and the benefit of COVID-19 countermeasures should impede its ability to spread globally in human populations.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Cricetinae , Humanos , Animales , Ratones , Especificidad del Huésped , Pangolines , SARS-CoV-2/genética , COVID-19/prevención & control , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Ratones Endogámicos BALB C
11.
Cell Stem Cell ; 27(6): 890-904.e8, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33128895

RESUMEN

Coronavirus infection causes diffuse alveolar damage leading to acute respiratory distress syndrome. The absence of ex vivo models of human alveolar epithelium is hindering an understanding of coronavirus disease 2019 (COVID-19) pathogenesis. Here, we report a feeder-free, scalable, chemically defined, and modular alveolosphere culture system for the propagation and differentiation of human alveolar type 2 cells/pneumocytes derived from primary lung tissue. Cultured pneumocytes express the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor angiotensin-converting enzyme receptor type-2 (ACE2) and can be infected with virus. Transcriptome and histological analysis of infected alveolospheres mirror features of COVID-19 lungs, including emergence of interferon (IFN)-mediated inflammatory responses, loss of surfactant proteins, and apoptosis. Treatment of alveolospheres with IFNs recapitulates features of virus infection, including cell death. In contrast, alveolospheres pretreated with low-dose IFNs show a reduction in viral replication, suggesting the prophylactic effectiveness of IFNs against SARS-CoV-2. Human stem cell-based alveolospheres, thus, provide novel insights into COVID-19 pathogenesis and can serve as a model for understanding human respiratory diseases.


Asunto(s)
Células Madre Adultas/virología , Células Epiteliales Alveolares/efectos de los fármacos , Tratamiento Farmacológico de COVID-19 , Interferones/farmacología , SARS-CoV-2/inmunología , Adulto , Células Madre Adultas/efectos de los fármacos , Células Madre Adultas/enzimología , Anciano , Anciano de 80 o más Años , Células Epiteliales Alveolares/enzimología , Células Epiteliales Alveolares/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/fisiopatología , Técnicas de Cultivo de Célula , Diferenciación Celular , Femenino , Humanos , Inflamación , Masculino , Ratones , Receptores de Coronavirus/metabolismo , Transcriptoma , Replicación Viral
12.
Expert Opin Ther Targets ; 23(1): 69-81, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30468628

RESUMEN

INTRODUCTION: Fibrosis is an irreversible pathological endpoint in many chronic diseases, including pulmonary fibrosis. Idiopathic pulmonary fibrosis (IPF) is a progressive and often fatal condition characterized by (myo)fibroblast proliferation and transformation in the lung, expansion of the extracellular matrix, and extensive remodeling of the lung parenchyma. Recent evidence indicates that IPF prevalence and mortality rates are growing in the United States and elsewhere. Despite decades of research on the pathogenic mechanisms of pulmonary fibrosis, few therapeutics have succeeded in the clinic, and they have failed to improve IPF patient survival. Areas covered: Based on a literature search and our own results, we discuss the key cellular and molecular responses that contribute to (myo)fibroblast actions and pulmonary fibrosis pathogenesis; this includes signaling pathways in various cells that aberrantly and persistently activate (myo)fibroblasts in fibrotic lesions and promote scar tissue formation in the lung. Expert opinion: Lessons learned from recent failures and successes with new therapeutics point toward approaches that can target multiple pro-fibrotic processes in IPF. Advances in preclinical modeling and single-cell genomics will also accelerate novel discoveries for effective treatment of IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática/terapia , Pulmón/fisiopatología , Terapia Molecular Dirigida , Animales , Proliferación Celular/fisiología , Progresión de la Enfermedad , Matriz Extracelular/metabolismo , Fibroblastos/citología , Humanos , Fibrosis Pulmonar Idiopática/mortalidad , Fibrosis Pulmonar Idiopática/fisiopatología , Miofibroblastos/citología , Sobrevida
13.
JCI Insight ; 3(16)2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30135315

RESUMEN

Wilms' tumor 1 (WT1) is a critical transcriptional regulator of mesothelial cells during lung development but is downregulated in postnatal stages and adult lungs. We recently showed that WT1 is upregulated in both mesothelial cells and mesenchymal cells in the pathogenesis of idiopathic pulmonary fibrosis (IPF), a fatal fibrotic lung disease. Although WT1-positive cell accumulation leading to severe fibrotic lung disease has been studied, the role of WT1 in fibroblast activation and pulmonary fibrosis remains elusive. Here, we show that WT1 functions as a positive regulator of fibroblast activation, including fibroproliferation, myofibroblast transformation, and extracellular matrix (ECM) production. Chromatin immunoprecipitation experiments indicate that WT1 binds directly to the promoter DNA sequence of α-smooth muscle actin (αSMA) to induce myofibroblast transformation. In support, the genetic lineage tracing identifies WT1 as a key driver of mesothelial-to-myofibroblast and fibroblast-to-myofibroblast transformation. Importantly, the partial loss of WT1 was sufficient to attenuate myofibroblast accumulation and pulmonary fibrosis in vivo. Further, our coculture studies show that WT1 upregulation leads to non-cell autonomous effects on neighboring cells. Thus, our data uncovered a pathogenic role of WT1 in IPF by promoting fibroblast activation in the peripheral areas of the lung and as a target for therapeutic intervention.


Asunto(s)
Actinas/genética , Fibrosis Pulmonar Idiopática/patología , Miofibroblastos/patología , Proteínas Represoras/metabolismo , Proteínas WT1/metabolismo , Adulto , Animales , Bleomicina/toxicidad , Diferenciación Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Fibrosis , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Humanos , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/genética , Pulmón/citología , Pulmón/efectos de los fármacos , Pulmón/patología , Masculino , Ratones Transgénicos , Cultivo Primario de Células , Regiones Promotoras Genéticas/genética
14.
JCI Insight ; 2(4): e91454, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28239659

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a severe fibrotic lung disease associated with fibroblast activation that includes excessive proliferation, tissue invasiveness, myofibroblast transformation, and extracellular matrix (ECM) production. To identify inhibitors that can attenuate fibroblast activation, we queried IPF gene signatures against a library of small-molecule-induced gene-expression profiles and identified Hsp90 inhibitors as potential therapeutic agents that can suppress fibroblast activation in IPF. Although Hsp90 is a molecular chaperone that regulates multiple processes involved in fibroblast activation, it has not been previously proposed as a molecular target in IPF. Here, we found elevated Hsp90 staining in lung biopsies of patients with IPF. Notably, fibroblasts isolated from fibrotic lesions showed heightened Hsp90 ATPase activity compared with normal fibroblasts. 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), a small-molecule inhibitor of Hsp90 ATPase activity, attenuated fibroblast activation and also TGF-ß-driven effects on fibroblast to myofibroblast transformation. The loss of the Hsp90AB, but not the Hsp90AA isoform, resulted in reduced fibroblast proliferation, myofibroblast transformation, and ECM production. Finally, in vivo therapy with 17-AAG attenuated progression of established and ongoing fibrosis in a mouse model of pulmonary fibrosis, suggesting that targeting Hsp90 represents an effective strategy for the treatment of fibrotic lung disease.


Asunto(s)
Fibroblastos/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Animales , Benzoquinonas/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Fibrosis , Técnicas de Silenciamiento del Gen , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/genética , Humanos , Fibrosis Pulmonar Idiopática/patología , Lactamas Macrocíclicas/farmacología , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones , Ratones Transgénicos , Miofibroblastos , ARN Interferente Pequeño , Transcriptoma , Factor de Crecimiento Transformador beta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA