Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 17(27): e2004539, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33511742

RESUMEN

High-surface-area gold catalysts are promising catalysts for a number of selective oxidation and reduction reactions but typically suffer catalyst deactivation at higher temperatures. The major reason for catalyst deactivation is sintering, which can be triggered via two mechanisms: particle migration and coalescence, and Ostwald ripening. Herein, a direct method to synthesize Au25 clusters stabilized with 3-mercaptopropyltrimethoxysilane (MPTS) ligands is discussed. The sintering of Au25 (MPTS)18 clusters on mesoporous silica (SBA-15) is monitored by using an environmental in situ transmission electron microscopy (TEM) technique. Results show that agglomeration of smaller particles is accelerated by increased mobility of particles during heat treatment, while growth of immobile particles occurs via diffusion of atomic species from smaller particles. The mobility of the Au clusters can be alleviated by fabricating overlayers of silica around the clusters. The resulting materials show tremendous sinter-resistance at temperatures up to 650 °C as shown by in situ TEM and extended X-ray absorption fine structure analysis.

2.
Sci Rep ; 11(1): 9812, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33963218

RESUMEN

CX-5461 is a G-quadruplex (G4) ligand currently in trials with initial indications of clinical activity in cancers with defects in homologous recombination repair. To identify more genetic defects that could sensitize tumors to CX-5461, we tested synthetic lethality for 480 DNA repair and genome maintenance genes to CX-5461, pyridostatin (PDS), a structurally unrelated G4-specific stabilizer, and BMH-21, which binds GC-rich DNA but not G4 structures. We identified multiple members of HRD, Fanconi Anemia pathways, and POLQ, a polymerase with a helicase domain important for G4 structure resolution. Significant synthetic lethality was observed with UBE2N and RNF168, key members of the DNA damage response associated ubiquitin signaling pathway. Loss-of-function of RNF168 and UBE2N resulted in significantly lower cell survival in the presence of CX-5461 and PDS but not BMH-21. RNF168 recruitment and histone ubiquitination increased with CX-5461 treatment, and nuclear ubiquitination response frequently co-localized with G4 structures. Pharmacological inhibition of UBE2N acted synergistically with CX-5461. In conclusion, we have uncovered novel genetic vulnerabilities to CX-5461 with potential significance for patient selection in future clinical trials.


Asunto(s)
Benzotiazoles/farmacología , Daño del ADN , G-Cuádruplex , Naftiridinas/farmacología , Proteínas de Neoplasias/metabolismo , Neoplasias , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Células HCT116 , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA