Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gut Pathog ; 13(1): 37, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099034

RESUMEN

BACKGROUND: The classification of natural antimicrobials as potential antibiotic replacements is still hampered by the absence of clear biological mechanisms behind their mode of action. This study investigated the mechanisms underlying the anti-bacterial effect of a mixture of natural antimicrobials (maltodextrin, citric acid, sodium citrate, malic acid, citrus extract and olive extract) against Campylobacter jejuni RC039, Salmonella enterica SE 10/72 and Clostridium perfringens ATCC® 13124 invasion of Madin-Darby Canine Kidney cells (MDCK). RESULTS: Minimum sub-inhibitory concentrations were determined for Campylobacter jejuni (0.25%), Salmonella enterica (0.50%) and Clostridium perfringens (0.50%) required for the in vitro infection assays with MDCK cells. The antimicrobial mixture significantly reduced the virulence of all three pathogens towards MDCK cells and restored the integrity of cellular tight junctions through increased transepithelial resistance (TEER) and higher expression levels of ZO-1 (zonula occludens 1) and occludin. This study also identified the ERK (external regulated kinase) signalling pathway as a key mechanism in blocking the pro-inflammatory cytokine production (IL-1ß, IL-6, IL-8, TNF-α) in infected cells. The reduction in hydrogen peroxide (H2O2) production and release by infected MDCK cells, in the presence of the antimicrobial mixture, was also associated with less tetrathionate formed by oxidation of thiosulphate (p < 0.0001). CONCLUSION: The present study describes for the first time that mixtures of natural antimicrobials can prevent the formation of substrates used by bacterial pathogens to grow and survive in anaerobic environments (e.g. tetrathionate). Moreover, we provide further insights into pathogen invasion mechanisms through restoration of cellular structures and describe their ability to block the ERK-MAPK kinase pathway responsible for inflammatory cytokine release.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA