RESUMEN
For decades, ill-defined autosomal dominant renal diseases have been reported, which originate from tubular cells and lead to tubular atrophy and interstitial fibrosis. These diseases are clinically indistinguishable, but caused by mutations in at least four different genes: UMOD, HNF1B, REN, and, as recently described, MUC1. Affected family members show renal fibrosis in the biopsy and gradually declining renal function, with renal failure usually occurring between the third and sixth decade of life. Here we describe 10 families and define eligibility criteria to consider this type of inherited disease, as well as propose a practicable approach for diagnosis. In contrast to what the frequently used term 'Medullary Cystic Kidney Disease' implies, development of (medullary) cysts is neither an early nor a typical feature, as determined by MRI. In addition to Sanger and gene panel sequencing of the four genes, we established SNaPshot minisequencing for the predescribed cytosine duplication within a distinct repeat region of MUC1 causing a frameshift. A mutation was found in 7 of 9 families (3 in UMOD and 4 in MUC1), with one indeterminate (UMOD p.T62P). On the basis of clinical and pathological characteristics we propose the term 'Autosomal Dominant Tubulointerstitial Kidney Disease' as an improved terminology. This should enhance recognition and correct diagnosis of affected individuals, facilitate genetic counseling, and stimulate research into the underlying pathophysiology.
Asunto(s)
Aberraciones Cromosómicas , Cromosomas Humanos Par 16 , Cromosomas Humanos Par 1 , Túbulos Renales/patología , Mucina-1/genética , Nefritis Intersticial/genética , Nefritis Intersticial/patología , Uromodulina/genética , Atrofia , Femenino , Fibrosis , Haplotipos , Humanos , Imagen por Resonancia Magnética , Masculino , Linaje , Terminología como AsuntoRESUMEN
Short-term studies have shown an attenuated immune response in hemodialysis patients after COVID-19-vaccination. The present study examines how antibody response is maintained after vaccination against SARS-CoV-2 in a large population of hemodialysis patients from six outpatient dialysis centers. We retrospectively assessed serum antibody levels against SARS-CoV-2 spike protein and nucleocapsid protein (electrochemiluminescence immunoassays, Roche Diagnostics) after COVID-19-vaccination in 298 hemodialysis and 103 non-dialysis patients (controls), comparing early and late antibody response. Compared to a non-dialysis cohort hemodialysis patients showed a favorable but profoundly lower early antibody response, which decreased substantially during follow-up measurement (median 6 months after vaccination). Significantly more hemodialysis patients had anti-SARS-CoV-2-S antibody titers below 100 U/mL (p < 0.001), which increased during follow-up from 23% to 45% but remained low in the control group (3% vs. 7%). In multivariate analysis, previous COVID-19 infections (p < 0.001) and female gender (p < 0.05) were significantly associated with higher early as well as late antibody vaccine response in hemodialysis patients, while there was a significant inverse correlation between patient age and systemic immunosuppression (p < 0.001). The early and late antibody responses were significantly higher in patients receiving vaccination after a SARS-CoV-2 infection compared to uninfected patients in both groups (p < 0.05). We also note that a higher titer after complete immunization positively affected late antibody response. The observation, that hemodialysis patients showed a significantly stronger decline of SARS-CoV-2 vaccination antibody titers within 6 months, compared to controls, supports the need for booster vaccinations to foster a stronger and more persistent antibody response.
RESUMEN
BACKGROUND: Some studies have shown an attenuated immune response in haemodialysis patients after vaccination. The present study examines the humoral response after mRNA vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a large population of haemodialysis patients from different outpatient dialysis centres. METHODS: We retrospectively assessed antibodies against SARS-CoV-2 spike protein and nucleocapsid protein (chemiluminescence immunoassays, Roche diagnostics) 3-6 weeks after the second mRNA vaccine dose in 179 maintenance haemodialysis and 70 non-dialysis patients (control cohort). Differences in anti-SARS-CoV-2 spike protein titers were statistically analysed with respect to patient-relevant factors, including age, gender, previous coronavirus disease 2019 (COVID-19) infection, systemic immunosuppressive therapy and time on dialysis. RESULTS: We found a favourable, but profoundly lower SARS-CoV-2 spike protein antibody response in comparison with a non-dialysis cohort (median 253.5 versus 1756 U/mL, P < 0.001). In multivariate analysis, previous COVID-19 infection (P < 0.001) and female gender were associated with a significantly higher vaccine response (P = 0.006) in haemodialysis patients, while there was a significant inverse correlation with increasing patient age and systemic immunosuppression (P < 0.001). There was no statistically significant correlation between the antibody titer and time on dialysis. Immune response in haemodialysis patients with a previous COVID-19 infection led to substantially higher antibody titers that were equal to those of vaccinated non-dialysis individuals with previous infection. CONCLUSION: We strongly argue in favour of regular antibody testing after COVID-19 vaccination in haemodialysis patients. Further studies should elucidate the utility of booster vaccinations to foster a stronger and persistent antibody response.