Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 215(3): 1009-1025, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28617955

RESUMEN

While Brachypodium distachyon (Brachypodium) is an emerging model for grasses, no expression atlas or gene coexpression network is available. Such tools are of high importance to provide insights into the function of Brachypodium genes. We present a detailed Brachypodium expression atlas, capturing gene expression in its major organs at different developmental stages. The data were integrated into a large-scale coexpression database ( www.gene2function.de), enabling identification of duplicated pathways and conserved processes across 10 plant species, thus allowing genome-wide inference of gene function. We highlight the importance of the atlas and the platform through the identification of duplicated cell wall modules, and show that a lignin biosynthesis module is conserved across angiosperms. We identified and functionally characterised a putative ferulate 5-hydroxylase gene through overexpression of it in Brachypodium, which resulted in an increase in lignin syringyl units and reduced lignin content of mature stems, and led to improved saccharification of the stem biomass. Our Brachypodium expression atlas thus provides a powerful resource to reveal functionally related genes, which may advance our understanding of important biological processes in grasses.


Asunto(s)
Brachypodium/citología , Brachypodium/genética , Pared Celular/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes de Plantas , Lignina/metabolismo , Arabidopsis/genética , Bases de Datos Genéticas , Oryza/genética , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Transcriptoma/genética
2.
Plant Physiol ; 172(1): 559-74, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27378816

RESUMEN

Fusarium head blight (FHB) is a cereal disease caused by Fusarium graminearum, a fungus able to produce type B trichothecenes on cereals, including deoxynivalenol (DON), which is harmful for humans and animals. Resistance to FHB is quantitative, and the mechanisms underlying resistance are poorly understood. Resistance has been related to the ability to conjugate DON into a glucosylated form, deoxynivalenol-3-O-glucose (D3G), by secondary metabolism UDP-glucosyltransferases (UGTs). However, functional analyses have never been performed within a single host species. Here, using the model cereal species Brachypodium distachyon, we show that the Bradi5g03300 UGT converts DON into D3G in planta. We present evidence that a mutation in Bradi5g03300 increases root sensitivity to DON and the susceptibility of spikes to F. graminearum, while overexpression confers increased root tolerance to the mycotoxin and spike resistance to the fungus. The dynamics of expression and conjugation suggest that the speed of DON conjugation rather than the increase of D3G per se is a critical factor explaining the higher resistance of the overexpressing lines. A detached glumes assay showed that overexpression but not mutation of the Bradi5g03300 gene alters primary infection by F. graminearum, highlighting the involvement of DON in early steps of infection. Together, these results indicate that early and efficient UGT-mediated conjugation of DON is necessary and sufficient to establish resistance to primary infection by F. graminearum and highlight a novel strategy to promote FHB resistance in cereals.


Asunto(s)
Brachypodium/genética , Glicosiltransferasas/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Brachypodium/enzimología , Resistencia a la Enfermedad/genética , Fusarium/metabolismo , Fusarium/fisiología , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucósidos/metabolismo , Glicosiltransferasas/metabolismo , Interacciones Huésped-Patógeno , Cinética , Mutación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tricotecenos/metabolismo , Uridina Difosfato/metabolismo
3.
Plant Physiol ; 168(1): 192-204, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25755252

RESUMEN

The oxidation of monolignols is a required step for lignin polymerization and deposition in cell walls. In dicots, both peroxidases and laccases are known to participate in this process. Here, we provide evidence that laccases are also involved in the lignification of Brachypodium distachyon, a model plant for temperate grasses. Transcript quantification data as well as in situ and immunolocalization experiments demonstrated that at least two laccases (LACCASE5 and LACCASE6) are present in lignifying tissues. A mutant with a misspliced LACCASE5 messenger RNA was identified in a targeting-induced local lesion in genome mutant collection. This mutant shows 10% decreased Klason lignin content and modification of the syringyl-to-guaiacyl units ratio. The amount of ferulic acid units ester linked to the mutant cell walls is increased by 40% when compared with control plants, while the amount of ferulic acid units ether linked to lignins is decreased. In addition, the mutant shows a higher saccharification efficiency. These results provide clear evidence that laccases are required for B. distachyon lignification and are promising targets to alleviate the recalcitrance of grass lignocelluloses.


Asunto(s)
Brachypodium/enzimología , Brachypodium/fisiología , Lacasa/metabolismo , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Tallos de la Planta/enzimología , Tallos de la Planta/fisiología , Alelos , Secuencia de Aminoácidos , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Brachypodium/genética , Secuencia Conservada , Ácidos Cumáricos/metabolismo , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Lacasa/genética , Datos de Secuencia Molecular , Mutación , Fenotipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Propionatos , Estructura Terciaria de Proteína , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/metabolismo
4.
Plant Methods ; 19(1): 31, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36991448

RESUMEN

BACKGROUND: Even for easy-to-transform species or genotypes, the creation of transgenic or edited plant lines remains a significant bottleneck. Thus, any technical advance that accelerates the regeneration and transformation process is welcome. So far, methods to produce Brachypodium distachyon (Bd) transgenics span at least 14 weeks from the start of tissue culture to the recovery of regenerated plantlets. RESULTS: We have previously shown that embryogenic somatic tissues grow in the scutellum of immature zygotic Bd embryos within 3 days of in vitro induction with exogenous auxin and that the development of secondary embryos can be initiated immediately thereafter. Here, we further demonstrate that such pluripotent reactive tissues can be genetically transformed with Agrobacterium tumefaciens right after the onset of somatic embryogenesis. In brief, immature zygotic embryos are induced for callogenesis for one week, co-cultured with Agrobacterium for three days, then incubated on callogenesis selective medium for three weeks, and finally transferred on selective regeneration medium for up to three weeks to obtain plantlets ready for rooting. This 7-to-8-week procedure requires only three subcultures. Its validation includes the molecular and phenotype characterization of Bd lines carrying transgenic cassettes and novel CRISPR/Cas9-generated mutations in two independent loci coding for nitrate reductase enzymes (BdNR1 and BdNR2). CONCLUSIONS: With a short callogenesis stage and streamlined in vitro regeneration following co-cultivation with Agrobacterium, transgenic and edited T0 Bd plantlets can be produced in about 8 weeks, a gain of one to two months compared to previously published methods, with no reduction in transformation efficiency and at lower costs.

5.
Plants (Basel) ; 11(8)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35448796

RESUMEN

Plant somatic embryogenesis (SE) is a natural process of vegetative propagation. It can be induced in tissue cultures to investigate developmental transitions, to create transgenic or edited lines, or to multiply valuable crops. We studied the induction of SE in the scutellum of monocots with Brachypodium distachyon as a model system. Towards the in-depth analysis of SE initiation, we determined the earliest stages at which somatic scutellar cells acquired an embryogenic fate, then switched to a morphogenetic mode in a regeneration sequence involving treatments with exogenous hormones: first an auxin (2,4-D) then a cytokinin (kinetin). Our observations indicated that secondary somatic embryos could already develop in the proliferative calli derived from immature zygotic embryo tissues within one week from the start of in vitro culture. Cell states and tissue identity were deduced from detailed histological examination, and in situ hybridization was performed to map the expression of key developmental genes. The fast SE induction method we describe here facilitates the mechanistic study of the processes involved and may significantly shorten the production of transgenic or gene-edited plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA