Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Microbiol ; 2018 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-29786171

RESUMEN

It has been previously shown that the transgenic overexpression of the plant root vacuolar proton pumps H+ -ATPase (V-ATPase) and H+ -PPase (V-PPase) confer tolerance to drought. Since plant-root endophytic bacteria can also promote drought tolerance, we hypothesize that such promotion can be associated to the enhancement of the host vacuolar proton pumps expression and activity. To test this hypothesis, we selected two endophytic bacteria endowed with an array of in vitro plant growth promoting traits. Their genome sequences confirmed the presence of traits previously shown to confer drought resistance to plants, such as the synthesis of nitric oxide and of organic volatile organic compounds. We used the two strains on pepper (Capsicuum annuum L.) because of its high sensitivity to drought. Under drought conditions, both strains stimulated a larger root system and enhanced the leaves' photosynthetic activity. By testing the expression and activity of the vacuolar proton pumps, H+ -ATPase (V-ATPase) and H+ -PPase (V-PPase), we found that bacterial colonization enhanced V-PPase only. We conclude that the enhanced expression and activity of V-PPase can be favoured by the colonization of drought-tolerance-inducing bacterial endophytes.

3.
Environ Microbiol Rep ; 7(4): 668-78, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26033617

RESUMEN

Oases are desert-farming agro-ecosystems, where date palm (Phoenix dactylifera L.) plays a keystone role in offsetting the effects of drought and maintaining a suitable microclimate for agriculture. At present, abundance, diversity and plant growth promotion (PGP) of date palm root-associated bacteria remain unknown. Considering the environmental pressure determined by the water scarcity in the desert environments, we hypothesized that bacteria associated with date palm roots improve plant resistance to drought. Here, the ecology of date palm root endophytes from oases in the Tunisian Sahara was studied with emphasis on their capacity to promote growth under drought. Endophytic communities segregated along a north-south gradient in correlation with geo-climatic parameters. Screening of 120 endophytes indicated that date palm roots select for bacteria with multiple PGP traits. Bacteria rapidly cross-colonized the root tissues of different species of plants, including the original Tunisian date palm cultivar, Saudi Arabian cultivars and Arabidopsis. Selected endophytes significantly increased the biomass of date palms exposed to repeated drought stress periods during a 9-month greenhouse experiment. Overall, results indicate that date palm roots shape endophytic communities that are capable to promote plant growth under drought conditions, thereby contributing an essential ecological service to the entire oasis ecosystem.


Asunto(s)
Biota , Sequías , Endófitos/clasificación , Phoeniceae/microbiología , Phoeniceae/fisiología , Desarrollo de la Planta , Raíces de Plantas/microbiología , Agricultura , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Clima Desértico , Resistencia a la Enfermedad , Endófitos/aislamiento & purificación , Datos de Secuencia Molecular , Enfermedades de las Plantas/prevención & control , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Túnez
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA