Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Anal Biochem ; 688: 115475, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38336012

RESUMEN

Biosimilars are a cost-effective alternative to biopharmaceuticals, necessitating rigorous analytical methods for consistency and compliance. Liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) is a versatile tool for assessing key attributes, encompassing molecular mass, primary structure, and post-translational modifications (PTMs). Adhering to ICH Q2R1, we validated an LC-HRMS based peptide mapping method using NISTmab as a reference. The method validation parameters, covering system suitability, specificity, accuracy, precision, robustness, and carryover, were comprehensively assessed. The method effectively differentiated the NISTmab from similar counterparts as well as from artificially introduced spiked conditions. Notably, the accuracy of mass error for NISTmab specific complementarity determining region peptides was within a maximum of 2.42 parts per million (ppm) from theoretical and the highest percent relative standard deviation (%RSD) observed for precision was 0.000219 %. It demonstrates precision in sequence coverage and PTM detection, with a visual inspection of total ion chromatogram approach for variability assessment. The method maintains robustness when subjected to diverse storage conditions, encompassing variations in column temperature and mobile phase composition. Negligible carryover was noted during the carryover analysis. In summary, this method serves as a versatile platform for multiple biosimilar development by effectively characterizing and identifying monoclonal antibodies, ultimately ensuring product quality.


Asunto(s)
Biosimilares Farmacéuticos , Biosimilares Farmacéuticos/análisis , Biosimilares Farmacéuticos/química , Anticuerpos Monoclonales/química , Cromatografía Líquida con Espectrometría de Masas , Mapeo Peptídico/métodos , Péptidos
2.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36361671

RESUMEN

Gestational diabetes mellitus (GDM) is recognized as a "window of opportunity" for the future prediction of such complications as type 2 diabetes mellitus and pelvic floor muscle disorders, including urinary incontinence and genitourinary dysfunction. Translational studies have reported that pelvic floor muscle disorders are due to a GDM-induced-myopathy (GDiM) of the pelvic floor muscle and rectus abdominis muscle (RAM). We now describe the transcriptome profiling of the RAM obtained by Cesarean section from GDM and non-GDM women with and without pregnancy-specific urinary incontinence (PSUI). We identified 650 genes in total, and the differentially expressed genes were defined by comparing three control groups to the GDM with PSUI group (GDiM). Enrichment analysis showed that GDM with PSUI was associated with decreased gene expression related to muscle structure and muscle protein synthesis, the reduced ability of muscle fibers to ameliorate muscle damage, and the altered the maintenance and generation of energy through glycogenesis. Potential genetic muscle biomarkers were validated by RT-PCR, and their relationship to the pathophysiology of the disease was verified. These findings help elucidate the molecular mechanisms of GDiM and will promote the development of innovative interventions to prevent and treat complications such as post-GDM urinary incontinence.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Enfermedades Musculares , Incontinencia Urinaria , Embarazo , Humanos , Femenino , Diabetes Gestacional/metabolismo , Recto del Abdomen/metabolismo , Cesárea/efectos adversos , Diabetes Mellitus Tipo 2/complicaciones , Transcriptoma , Incontinencia Urinaria/genética , Biomarcadores , Perfilación de la Expresión Génica
3.
J Virol ; 94(23)2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32938771

RESUMEN

The human respiratory syncytial virus (hRSV) M2-1 protein functions as a processivity and antitermination factor of the viral polymerase complex. Here, the first evidence that the hRSV M2-1 core domain (cdM2-1) alone has an unfolding activity for long RNAs is presented and the biophysical and dynamic characterization of the cdM2-1/RNA complex is provided. The main contact region of cdM2-1 with RNA was the α1-α2-α5-α6 helix bundle, which suffered local conformational changes and promoted the RNA unfolding activity. This activity may be triggered by base-pairing recognition. RNA molecules wrap around the whole cdM2-1, protruding their termini over the domain. The α2-α3 and α3-α4 loops of cdM2-1 were marked by an increase in picosecond internal motions upon RNA binding, even though they are not directly involved in the interaction. The results revealed that the cdM2-1/RNA complex originates from a fine-tuned binding, contributing to the unraveling interaction aspects necessary for M2-1 activity.IMPORTANCE The main outcome is the molecular description of the fine-tuned binding of the cdM2-1/RNA complex and the provision of evidence that the domain alone has unfolding activity for long RNAs. This binding mode is essential in the understanding of the function in the full-length protein. Human respiratory syncytial virus (hRSV), an orthopneumovirus, stands out for the unique role of its M2-1 protein as a transcriptional antitermination factor able to increase RNA polymerase processivity.


Asunto(s)
ARN/química , ARN/metabolismo , Virus Sincitial Respiratorio Humano/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Sitios de Unión , ARN Polimerasas Dirigidas por ADN/metabolismo , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Virus Sincitial Respiratorio Humano/genética , Proteínas Virales/genética
4.
Popul Health Metr ; 18(Suppl 1): 14, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32993668

RESUMEN

BACKGROUND: Brazil is the world's fifth most populous nation, and is currently experimenting a fast demographic aging process in a context of scarce resources and social inequalities. To understand the health profile of older adults in Brazil is fundamental for planning public policies. METHODS: The estimates were derived from data obtained through the collaboration between the Brazilian Ministry of Health and the Institute of Health Metrics and Evaluation of the University of Washington. The Brazilian Institute of Geography and Statistics provided the population estimates. Data on causes of death came from the Mortality Information System. To calculate morbidity, population-based studies on the prevalence of diseases in Brazil were comprehensively searched, in addition to information obtained from national databases such as the Hospital Information System, the Outpatient Information System, and the Injury Information System. We presented the Global Burden of Disease (GBD) 2017 estimates among Brazilian older adults (60+ years old) for life expectancy at birth (LE), healthy life expectancy (HALE), cause-specific mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life years (DALYs), from 2000 to 2017. RESULTS: LE at birth significantly increased from 71.3 years (95% UI to 70.9-71.8) to 75.2 years (95% UI 74.7-75.7). There was a trend of increasing HALE, from 62.2 years (95% UI 59.54-64.5) to 65.5 years (95% UI 62.6-68.0). The proportion of DALYs among older adults increased from 7.3 to 10.3%. Chronic noncommunicable diseases are the leading cause of death among middle aged and older adults, while Alzheimer's disease is a leading cause only among older adults. Mood disorders, musculoskeletal pain, and hearing or vision losses are among the leading causes of disability. CONCLUSIONS: The increase in LE and the decrease of the DALYs rates are probably results of the improvement of social conditions and health policies. However, the smaller increase of HALE than LE means that despite living more, people spend a substantial time of their old age with disability and illness. Preventable or potentially controllable diseases are responsible for most of the burden of disease among Brazilian older adults. Health investments are necessary to obtain longevity with quality of life in Brazil.


Asunto(s)
Toma de Decisiones , Carga Global de Enfermedades/estadística & datos numéricos , Política de Salud , Esperanza de Vida/tendencias , Mortalidad/tendencias , Anciano , Anciano de 80 o más Años , Brasil/epidemiología , Humanos , Persona de Mediana Edad , Años de Vida Ajustados por Calidad de Vida , Características de la Residencia , Factores Socioeconómicos
5.
BMC Pregnancy Childbirth ; 20(1): 117, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32075598

RESUMEN

BACKGROUND: Pelvic floor muscles (PFM) and rectus abdominis muscles (RAM) of pregnant diabetic rats exhibit atrophy, co-localization of fast and slow fibers and an increased collagen type I/III ratio. However, the role of similar PFM or RAM hyperglycemic-related myopathy in women with gestational diabetes mellitus (GDM) remains poorly investigated. This study aims to assess the frequency of pelvic floor muscle disorders and pregnancy-specific urinary incontinence (PS-UI) 12 months after the Cesarean (C) section in women with GDM. Specifically, differences in PFM/RAM hyperglycemic myopathy will be evaluated. METHODS: The Diamater is an ongoing cohort study of four groups of 59 pregnant women each from the Perinatal Diabetes Research Centre (PDRC), Botucatu Medical School (FMB)-UNESP (São Paulo State University), Brazil. Diagnosis of GDM and PS-UI will be made at 24-26 weeks, with a follow-up at 34-38 weeks of gestation. Inclusion in the study will occur at the time of C-section, and patients will be followed at 24-48 h, 6 weeks and 6 and 12 months postpartum. Study groups will be classified as (1) GDM plus PS-UI; (2) GDM without PS-UI; (3) Non-GDM plus PS-UI; and (4) Non-GDM without PS-UI. We will analyze relationships between GDM, PS-UI and hyperglycemic myopathy at 12 months after C-section. The mediator variables to be evaluated include digital palpation, vaginal squeeze pressure, 3D pelvic floor ultrasound, and 3D RAM ultrasound. RAM samples obtained during C-section will be analyzed for ex-vivo contractility, morphological, molecular and OMICS profiles to further characterize the hyperglycemic myopathy. Additional variables to be evaluated include maternal age, socioeconomic status, educational level, ethnicity, body mass index, weight gain during pregnancy, quality of glycemic control and insulin therapy. DISCUSSION: To our knowledge, this will be the first study to provide data on the prevalence of PS-UI and RAM and PFM physical and biomolecular muscle profiles after C-section in mothers with GDM. The longitudinal design allows for the assessment of cause-effect relationships between GDM, PS-UI, and PFMs and RAMs myopathy. The findings may reveal previously undetermined consequences of GDM.


Asunto(s)
Diabetes Gestacional/fisiopatología , Enfermedades Musculares/fisiopatología , Incontinencia Urinaria/fisiopatología , Adulto , Brasil , Cesárea , Estudios de Cohortes , Femenino , Edad Gestacional , Ganancia de Peso Gestacional , Humanos , Edad Materna , Contracción Muscular/fisiología , Fuerza Muscular/fisiología , Palpación , Diafragma Pélvico/fisiopatología , Periodo Posparto , Embarazo , Recto del Abdomen/fisiopatología , Vagina
6.
Int J Mol Sci ; 21(6)2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32213871

RESUMEN

The human Respiratory Syncytial Virus (hRSV) is the most frequent agent of respiratory infections in infants and children with no currently approved vaccine. The M2-1 protein is an important transcriptional antitermination factor and a potential target for viral replication inhibitor development. Hesperetin (HST) and hesperidin (HSD) are flavonoids from the flavanone group, naturally found in citrus and have, as one of their properties, antiviral activity. The present study reports on the interactions between hRSV M2-1 and these flavanones using experimental techniques in association with computational tools. STD-NMR results showed that HST and HSD bind to M2-1 by positioning their aromatic rings into the target protein binding site. Fluorescence quenching measurements revealed that HST had an interaction affinity greater than HSD towards M2-1. The thermodynamic analysis suggested that hydrogen bonds and van der Waals interactions are important for the molecular stabilization of the complexes. Computational simulations corroborated with the experimental results and indicated that the possible interaction region for the flavonoids is the AMP-binding site in M2-1. Therefore, these results point that HST and HSD bind stably to a critical region in M2-1, which is vital for its biological function, and thus might play a possible role antiviral against hRSV.


Asunto(s)
Antivirales/farmacología , Hesperidina/farmacología , Simulación del Acoplamiento Molecular , Proteínas Virales/química , Antivirales/química , Sitios de Unión , Hesperidina/química , Unión Proteica , Proteínas Virales/metabolismo
7.
BMC Med ; 16(1): 144, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30185204

RESUMEN

BACKGROUND: Brazil has high burdens of tuberculosis (TB) and HIV, as previously estimated for the 26 states and the Federal District, as well as high levels of inequality in social and health indicators. We improved the geographic detail of burden estimation by modelling deaths due to TB and HIV and TB case fatality ratios for the more than 5400 municipalities in Brazil. METHODS: This ecological study used vital registration data from the national mortality information system and TB case notifications from the national communicable disease notification system from 2001 to 2015. Mortality due to TB and HIV was modelled separately by cause and sex using a Bayesian spatially explicit mixed effects regression model. TB incidence was modelled using the same approach. Results were calibrated to the Global Burden of Disease Study 2016. Case fatality ratios were calculated for TB. RESULTS: There was substantial inequality in TB and HIV mortality rates within the nation and within states. National-level TB mortality in people without HIV infection declined by nearly 50% during 2001 to 2015, but HIV mortality declined by just over 20% for males and 10% for females. TB and HIV mortality rates for municipalities in the 90th percentile nationally were more than three times rates in the 10th percentile, with nearly 70% of the worst-performing municipalities for male TB mortality and more than 75% for female mortality in 2001 also in the worst decile in 2015. The same municipality ranking metric for HIV was observed to be between 55% and 61%. Within states, the TB mortality rate ratios by sex for municipalities in the worst decile versus the best decile varied from 1.4 to 2.9, and HIV varied from 1.4 to 4.2. The World Health Organization target case fatality rate for TB of less than 10% was achieved in 9.6% of municipalities for males versus 38.4% for females in 2001 and improved to 38.4% and 56.6% of municipalities for males versus females, respectively, by 2014. CONCLUSIONS: Mortality rates in municipalities within the same state exhibited nearly as much relative variation as within the nation as a whole. Monitoring the mortality burden at this level of geographic detail is critical for guiding precision public health responses.


Asunto(s)
Infecciones por VIH/prevención & control , Tuberculosis/prevención & control , Brasil , Femenino , Infecciones por VIH/epidemiología , Historia del Siglo XXI , Humanos , Masculino , Tuberculosis/epidemiología
8.
J Cell Biochem ; 118(5): 1003-1013, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27463229

RESUMEN

Protandim and 6-gingerol, two potent nutraceuticals, have been shown to decrease free radicals production through enhancing endogenous antioxidant enzymes. In this study, we evaluated the effects of these products on the expression of different factors involved in osteoarthritis (OA) process. Human OA chondrocytes were treated with 1 ng/ml IL-1ß in the presence or absence of protandim (0-10 µg/ml) or 6-gingerol (0-10 µM). OA was induced surgically in mice by destabilization of the medial meniscus (DMM). The animals were treated weekly with an intraarticular injection of 10 µl of vehicle or protandim (10 µg/ml) for 8 weeks. Sham-operated mice served as controls. In vitro, we demonstrated that protandim and 6-gingerol preserve cell viability and mitochondrial metabolism and prevented 4-hydroxynonenal (HNE)-induced cell mortality. They activated Nrf2 transcription factor, abolished IL-1ß-induced NO, PGE2 , MMP-13, and HNE production as well as IL-ß-induced GSTA4-4 down-regulation. Nrf2 overexpression reduced IL-1ß-induced HNE and MMP-13 as well as IL-1ß-induced GSTA4-4 down-regulation. Nrf2 knockdown following siRNA transfection abolished protandim protection against oxidative stress and catabolism. The activation of MAPK and NF-κB by IL-1ß was not affected by 6-gingerol. In vivo, we observed that Nrf2 and GSTA4-4 expression was significantly lower in OA cartilage from humans and mice compared to normal controls. Interestingly, protandim administration reduced OA score in DMM mice. Altogether, our data indicate that protandim and 6-gingerol are essential in preserving cartilage and abolishing a number of factors known to be involved in OA pathogenesis. J. Cell. Biochem. 118: 1003-1013, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Antiinflamatorios/administración & dosificación , Catecoles/administración & dosificación , Condrocitos/efectos de los fármacos , Medicamentos Herbarios Chinos/administración & dosificación , Alcoholes Grasos/administración & dosificación , Osteoartritis/tratamiento farmacológico , Animales , Antiinflamatorios/farmacología , Apoptosis/efectos de los fármacos , Catecoles/farmacología , Supervivencia Celular , Células Cultivadas , Condrocitos/citología , Suplementos Dietéticos , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Alcoholes Grasos/farmacología , Glutatión Transferasa/metabolismo , Humanos , Inyecciones Intraarticulares , Interleucina-1beta/efectos adversos , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal/efectos de los fármacos
9.
Cancer Metab ; 12(1): 24, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113152

RESUMEN

BACKGROUND: Prostate cancer (PCa) shows a rewired metabolism featuring increased fatty acid uptake and synthesis via de novo lipogenesis, both sharply related to mitochondrial physiology. The docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (PUFA) that exerts its antitumoral properties via different mechanisms, but its specific action on mitochondria in PCa is not clear. Therefore, we investigated whether the DHA modulates mitochondrial function in PCa cell lines. METHODS: Here, we evaluated mitochondrial function of non-malignant PNT1A and the castration-resistant (CRPC) prostate 22Rv1 and PC3 cell lines in response to DHA incubation. For this purpose, we used Seahorse extracellular flux assay to assess mitochondria function, [14C]-glucose to evaluate its oxidation as well as its contribution to fatty acid synthesis, 1H-NMR for metabolite profile determination, MitoSOX for superoxide anion production, JC-1 for mitochondrial membrane polarization, mass spectrometry for determination of phosphatidylglycerol levels and composition, staining with MitoTracker dye to assess mitochondrial morphology under super-resolution in addition to Transmission Electron Microscopy, In-Cell ELISA for COX-I and SDH-A protein expression and flow cytometry (Annexin V and 7-AAD) for cell death estimation. RESULTS: In all cell lines DHA decreased basal respiratory activity, ATP production, and the spare capacity in mitochondria. Also, the omega-3 induced mitochondrial hyperpolarization, ROS overproduction and changes in membrane phosphatidylglycerol composition. In PNT1A, DHA led to mitochondrial fragmentation and it increased glycolysis while in cancer cells it stimulated glucose oxidation, but decreased de novo lipogenesis specifically in 22Rv1, indicating a metabolic shift. In all cell lines, DHA modulated several metabolites related to energy metabolism and it was incorporated in phosphatidylglycerol, a precursor of cardiolipin, increasing the unsaturation index in the mitochondrial membrane. Accordingly, DHA triggered cell death mainly in PNT1A and 22Rv1. CONCLUSION: In conclusion, mitochondrial metabolism is significantly affected by the PUFA supplementation to the point that cells are not able to proliferate or survive under DHA-enriched condition. Moreover, combination of DHA supplementation with inhibition of metabolism-related pathways, such as de novo lipogenesis, may be synergistic in castration-resistant prostate cancer.

10.
Membranes (Basel) ; 14(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38668112

RESUMEN

The human Respiratory Syncytial Virus (hRSV) stands as one of the most common causes of acute respiratory diseases. The infectivity of this virus is intricately linked to its membrane proteins, notably the attachment glycoprotein (G protein). The latter plays a key role in facilitating the attachment of hRSV to respiratory tract epithelial cells, thereby initiating the infection process. The present study aimed to characterize the interaction of the conserved cysteine-noose domain of hRSV G protein (cndG) with the transmembrane CX3C motif chemokine receptor 1 (CX3CR1) isoforms using computational tools of molecular modeling, docking, molecular dynamics simulations, and binding free energy calculations. From MD simulations of the molecular system embedded in the POPC lipid bilayer, we showed a stable interaction of cndG with the canonical fractalkine binding site in the N-terminal cavity of the CX3CR1 isoforms and identified that residues in the extracellular loop 2 (ECL2) region and Glu279 of this receptor are pivotal for the stabilization of CX3CR1/cndG binding, corroborating what was reported for the interaction of the chemokine fractalkine with CX3CR1 and its structure homolog US28. Therefore, the results presented here contribute by revealing key structural points for the CX3CR1/G interaction, allowing us to better understand the biology of hRSV from its attachment process and to develop new strategies to combat it.

11.
Biol Proced Online ; 15(1): 10, 2013 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-24060497

RESUMEN

BACKGROUND: The ZNF706 gene encodes a protein that belongs to the zinc finger family of proteins and was found to be highly expressed in laryngeal cancer, making the structure and function of ZNF706 worthy of investigation. In this study, we expressed and purified recombinant human ZNF706 that was suitable for structural analysis in Escherichia coli BL21(DH3). FINDINGS: ZNF706 mRNA was extracted from a larynx tissue sample, and cDNA was ligated into a cloning vector using the TOPO method. ZNF706 protein was expressed according to the E. coli expression system procedures and was purified using a nickel-affinity column. The structural qualities of recombinant ZNF706 and quantification alpha, beta sheet, and other structures were obtained by spectroscopy of circular dichroism. ZNF706's structural modeling showed that it is composed of α-helices (28.3%), ß-strands (19.4%), and turns (20.9%), in agreement with the spectral data from the dichroism analysis. CONCLUSIONS: We used circular dichroism and molecular modeling to examine the structure of ZNF706. The results suggest that human recombinant ZNF706 keeps its secondary structures and is appropriate for functional and structural studies. The method of expressing ZNF706 protein used in this study can be used to direct various functional and structural studies that will contribute to the understanding of its function as well as its relationship with other biological molecules and its putative role in carcinogenesis.

12.
Virus Res ; 318: 198850, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35750131

RESUMEN

The human Respiratory Syncytial Virus (hRSV) is the main causative agent of acute respiratory infections (ARI), such as pneumonia and bronchiolitis. One of the factors that lead to success in viral replication is the interaction of the M2-2 protein with the ribosomal complex. This interaction is responsible for the phase change of viral activity, acting as an inhibitor or inducer of viral replication, according to the concentration of mRNA. Based on the importance of M2-2 gene and protein have to viral physiology, we performed here evaluations of genetic diversity, phylogenetic reconstructions, phylodynamics, and selection test. Our results suggested an alternative way of classifying this virus in clades A and B, based on a new phylogenetic marker, the M2-2 gene. Therefore, our study is the first one to investigate the dynamics of the evolutionary diversification process of hRSV from the perspective of the M2-2 viral gene. In our study was also identified that the M2-2 gene is under the effect of purifying selection originated by population genetic bottlenecks. Therefore, the M2-2 gene demonstrated an interesting potential to be applied in evolutionary studies involving hRSV, recovering phylogenetic signals and traits of natural selection under the evolution of this virus.


Asunto(s)
Filogenia , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Genes Virales , Humanos , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/genética , Virus Sincitial Respiratorio Humano/genética , Selección Genética , Proteínas Virales
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 283: 121751, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35973382

RESUMEN

Human respiratory syncytial virus (hRSV) infections are one of the most causes of acute lower respiratory tract infections in children and elderly. The development of effective antiviral therapies or preventive vaccines against hRSV is not available yet. Thus, it is necessary to search for protein targets to combat this viral infection, as well as potential ways to block them. Non-Structural 1 (NS1) protein is an important factor for viral replication success since reduces the immune response by interacting with proteins in the type I interferon pathway. The influence of NS1 on the cell's immune response denotes the potential of its inhibition, being a possible target of treatment against hRSV infection. Here, it was studied the interaction of hRSV NS1 with natural flavonoids chrysin, morin, kaempferol, and myricetin and their mono-acetylated chrysin and penta-acetylated morin derivatives using spectroscopic techniques and computational simulations. The fluorescence data indicate that the binding affinities are on the order of 105 M-1, which are directly related to the partition coefficient of each flavonoid with Pearson's correlation coefficients of 0.76-0.80. The thermodynamic analysis suggests that hydrophobic interactions play a key role in the formation of the NS1/flavonoid complexes, with positive values of enthalpy and entropy changes. The computational approach proposes that flavonoids bind in a region of NS1 formed between the C-terminal α3-helix and the protein core, important for its biological function, and corroborate with experimental data revealing that hydrophobic contacts are important for the binding. Therefore, the present study provides relevant molecular details for the development of a possible new strategy to fight infections caused by hRSV.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Anciano , Niño , Flavonoides/farmacología , Humanos , Virus Sincitial Respiratorio Humano/química , Virus Sincitial Respiratorio Humano/fisiología , Termodinámica
14.
J Biomol Struct Dyn ; 40(5): 2156-2168, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33076779

RESUMEN

The human Respiratory Syncytial Virus (hRSV) is one of the most common causes of acute respiratory diseases such as bronchiolitis and pneumonia in children worldwide. Among the viral proteins, the nucleoprotein (N) stands out for forming the nucleocapsid (NC) that functions as a template for replication and transcription by the viral polymerase complex. The NC/polymerase recognition is mediated by the phosphoprotein (P), which establishes an interaction of its C-terminal residues with a hydrophobic pocket in the N-terminal domain of N (N-NTD). The present study consists of biophysical characterization of N-NTD and investigation of flavonoids binding to this domain using experimental and computational approaches. Saturation transfer difference (STD)-NMR measurements showed that among the investigated flavonoids, only hesperetin (Hst) bound to N-NTD. The binding epitope mapping of Hst suggested that its fused aromatic ring is buried in the protein binding site. STD-NMR and fluorescence anisotropy experiments showed that Hst competes with P protein C-terminal dipeptides for the hRSV nucleoprotein/phosphoprotein (N/P) interaction site in N-NTD, indicating that Hst binds to the hydrophobic pocket in this domain. Computational simulations of molecular docking and dynamics corroborated with experimental results, presenting that Hst established a stable interaction with the N/P binding site. The outcomes presented herein shed light on literature reports that described a significant antireplicative activity of Hst against hRSV, revealing molecular details that can provide the development of a new strategy against this virus.


Asunto(s)
Virus Sincitial Respiratorio Humano , Sitios de Unión , Niño , Hesperidina , Humanos , Simulación del Acoplamiento Molecular , Nucleoproteínas/química , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Unión Proteica , Virus Sincitial Respiratorio Humano/química , Virus Sincitial Respiratorio Humano/metabolismo
15.
Biomol NMR Assign ; 15(2): 449-453, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34417717

RESUMEN

KIN is a DNA/RNA-binding protein conserved evolutionarily from yeast to humans and expressed ubiquitously in mammals. It is an essential nuclear protein involved in numerous cellular processes, such as DNA replication, class-switch recombination, cell cycle regulation, and response to UV or ionizing radiation-induced DNA damage. The C-terminal region of the human KIN (hKIN) protein is composed of an SH3-like tandem domain, which is crucial for the anti-proliferation effect of the full-length protein. Herein, we present the 1H, 15N, and 13C resonances assignment of the backbone and side chains for the SH3-like tandem domain of the hKIN protein, as well as the secondary structure prediction based on the assigned chemical shifts using TALOS-N software. This work prepares the ground for future studies of RNA-binding and backbone dynamics.


Asunto(s)
Dominios Homologos src
16.
Comput Struct Biotechnol J ; 19: 2027-2044, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995900

RESUMEN

During their life cycle, Leishmania parasites display a fine-tuned regulation of the mRNA translation through the differential expression of isoforms of eukaryotic translation initiation factor 4E (LeishIF4Es). The interaction between allosteric modulators such as 4E-interacting proteins (4E-IPs) and LeishIF4E affects the affinity of this initiation factor for the mRNA cap. Here, several computational approaches were employed to elucidate the molecular bases of the previously-reported allosteric modulation in L. major exerted by 4E-IP1 (Lm4E-IP1) on eukaryotic translation initiation factor 4E 1 (LmIF4E-1). Molecular dynamics (MD) simulations and accurate binding free energy calculations (ΔGbind ) were combined with network-based modeling of residue-residue correlations. We also describe the differences in internal motions of LmIF4E-1 apo form, cap-bound, and Lm4E-IP1-bound systems. Through community network calculations, the differences in the allosteric pathways of allosterically-inhibited and active forms of LmIF4E-1 were revealed. The ΔGbind values show significant differences between the active and inhibited systems, which are in agreement with the available experimental data. Our study thoroughly describes the dynamical perturbations of LmIF4E-1 cap-binding site triggered by Lm4E-IP1. These findings are not only essential for the understanding of a critical process of trypanosomatids' gene expression but also for gaining insight into the allostery of eukaryotic IF4Es, which could be useful for structure-based design of drugs against this protein family.

17.
Chem Biol Interact ; 315: 108876, 2020 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-31669340

RESUMEN

4-methylesculetin (4 ME) is a natural antioxidant coumarin with protective effects on the intestinal inflammation, in which oxidative stress plays a key role in its aetiology and pathophysiology. Based on this, we examined the antioxidant molecular mechanisms involved in the intestinal anti-inflammatory activity of the 4 ME. For this purpose, we investigated the effects of the 4 ME on the modulation of gene expression and antioxidant-related enzyme activities in TNBS model of intestinal inflammation as well as the molecular interaction between 4 ME and glutathione reductase. Our results showed that 4 ME modulated glutathione-related enzymes, mainly increasing glutathione reductase activity. These effects were related to upregulation of glutathione reductase and Nrf2 gene expression. Fluorescence and nuclear magnetic resonance data showed that interaction between 4 ME and glutathione reductase is collisional, hydrophobic and spontaneous, in which C4 methyl group is the second epitope most buried into glutathione reductase. Molecular modelling calculation showed Lys70-B, Arg81-A, Glu381-B, Asp443-A, Ser444-A, Glu447-B and Ser475-A participated in electrostatic interaction, Lys70-B, Glu381-B and Arg81-A acted in the hydrophobic interactions and Trp73, Phe377 and Ala446 are responsible for the hydrogen bonds. Based on this, our results showed 4 ME acted by different mechanisms to control oxidative stress induced by intestinal damage, controlling the imbalance between myeloperoxidase activity and glutathione production, upregulating the glutathione S-transferase and glutathione reductase activities, preventing the Nrf2 and glutathione gene expression downregulation with consequent glutathione maintenance. Finally, 4 ME interacted at molecular level with glutathione reductase, stabilizing its enzymatic activity and reducing oxidative stress to take place in intestinal inflammatory process.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Cumarinas/farmacología , Inflamación/tratamiento farmacológico , Umbeliferonas/farmacología , Animales , Glutatión/metabolismo , Glutatión Reductasa/metabolismo , Inflamación/metabolismo , Masculino , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Peroxidasa/metabolismo , Ratas , Ratas Wistar
18.
Einstein (Sao Paulo) ; 18: eAO5262, 2020.
Artículo en Inglés, Portugués | MEDLINE | ID: mdl-32130328

RESUMEN

OBJECTIVE: To compare the frequency of respiratory tract infections in children treated with OM-85 BV and placebo during the 3-month therapy period, and observation for a further 3 months after treatment. METHODS: A randomized, double-blind, placebo-controlled trial was conducted with 54 children (6 months to 5 years old) with no past history of recurrent respiratory infections attending daycare center. Family members were instructed to administer one capsule per day for 10 consecutive days, for 3 months of OM-85 BV or placebo. Telephone interviews were conducted every 30 days. RESULTS: There was no significant difference in the number of respiratory infections between the groups. The mean number of respiratory tract infection in the OM-85 BV Group in the first 3 months was 0.92±0.87, and in the Placebo Group was 0.74±1.02, and at 6 months it was 1.62±1.47 and 1.03±1.34, respectively. CONCLUSION: OM-85 BV was not effective in the primary prevention of respiratory tract infections. Although most authors recommend the use of this immunostimulant in children with a history of recurrent respiratory infections, more studies are needed to define its usefulness in the primary prevention of respiratory infections in healthy children exposed to few risk factors.


Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Extractos Celulares/uso terapéutico , Prevención Primaria/métodos , Lactancia Materna , Guarderías Infantiles , Preescolar , Método Doble Ciego , Femenino , Humanos , Lactante , Masculino , Proyectos Piloto , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Contaminación por Humo de Tabaco , Resultado del Tratamiento
19.
Virus Res ; 276: 197805, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31712123

RESUMEN

Human respiratory syncytial virus (hRSV) is one of the main etiological agents of diseases of the lower respiratory tract and is often responsible for the hospitalization of children and the elderly. To date, treatments are only palliative and there is no vaccine available. Natural products show exceptional structural diversity and they have played a vital role in drug research. Several investigations focused on applied structural modification of natural products to improved metabolic stability, solubility and biological actions them. Quercetin is a flavonoid that presents several biological activities, including anti-hRSV role. Some works criticize the pharmacological use of Quercetin because it has low solubility and low specificity. In this sense, we acetylated Quercetin structure and we used in vitro and in silico assays to compare anti-hRSV function between Quercetin (Q0) and its derivative molecule (Q1). Q1 shows lower cytotoxic effect than Q0 on HEp-2 cells. In addition, Q1 was more efficient than Q0 to protect HEp-2 cells infected with different multiplicity of infection (0.1-1 MOI). The virucidal effects of Q0 and Q1 suggest interaction between these molecules and viral particle. Dynamic molecular results suggest that Q0 and Q1 may interact with F-protein on hRSV surface in an important region to adhesion and viral infection. Q1 interaction with F-protein showed ΔG= -14.22 kcal/mol and it was more stable than Q0. Additional, MTT and plate assays confirmed that virucidal Q1 effects occurs during adhesion step of cycle hRSV replication. In conclusion, acetylation improves anti-hRSV Quercetin effects because Quercetin pentaacetate could interact with F-protein with lower binding energy and better stability to block viral adhesion. These results show alternative anti-hRSV strategy and contribute to drug discovery and development.


Asunto(s)
Antivirales/farmacología , Células Epiteliales/efectos de los fármacos , Quercetina/análogos & derivados , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Acoplamiento Viral/efectos de los fármacos , Acetilación , Línea Celular , Células Epiteliales/virología , Humanos , Simulación de Dinámica Molecular , Quercetina/farmacología , Virus Sincitial Respiratorio Humano/fisiología , Proteínas Virales de Fusión/metabolismo , Replicación Viral/efectos de los fármacos
20.
Heliyon ; 5(11): e02869, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31844748

RESUMEN

Grb2 is an important regulator of normal vs. oncogenic cell signaling transduction. It plays a pivotal role on kinase-mediated signaling transduction by linking Receptor Tyrosine kinases to Ras/MAPK pathway which is known to bring oncogenic outcome. Coumarins are phenolic molecules found in several plants and seeds widely studied because of the antibiotic, anti-inflammatory, anticoagulant, vasodilator, and anti-tumor properties. Despite several studies about the anti-tumor properties of Coumarin in vivo and the role of Grb2 in signaling pathways related to cell proliferation, a molecular level investigation of the interaction between Grb2 and Coumarin is still missing. In this study, we performed a combined set of biophysical approaches to get insights on the interaction between Grb2 in a dimer state and Coumarin. Our results showed that Coumarin interacts with Grb2 dimer through its SH2 domain. The interaction is entropically driven, 1:1 molecular ratio and presents equilibrium constant of 105 M-1. In fact, SH2 is a well-known domain and a versatile signaling module for drug targeting which has been reported to bind compounds that block Ras activation in vivo. Despite we don't know the biological role coming from interaction between Grb2-SH2 domain and Coumarin, it is clear that this molecule could work in the same way as a SH2 domain inhibitor in order to block the link of Receptor Tyrosine kinases to Ras/MAPK pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA